File size: 4,800 Bytes
5d8f89c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_small_sgd_001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.855
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smids_1x_deit_small_sgd_001_fold5
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3554
- Accuracy: 0.855
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9725 | 1.0 | 75 | 0.9578 | 0.58 |
| 0.8549 | 2.0 | 150 | 0.8545 | 0.6367 |
| 0.7685 | 3.0 | 225 | 0.7653 | 0.6967 |
| 0.7189 | 4.0 | 300 | 0.6967 | 0.7383 |
| 0.6469 | 5.0 | 375 | 0.6428 | 0.7567 |
| 0.5993 | 6.0 | 450 | 0.5995 | 0.7667 |
| 0.5809 | 7.0 | 525 | 0.5645 | 0.7717 |
| 0.5382 | 8.0 | 600 | 0.5378 | 0.7817 |
| 0.5132 | 9.0 | 675 | 0.5146 | 0.7933 |
| 0.5002 | 10.0 | 750 | 0.4976 | 0.7817 |
| 0.5258 | 11.0 | 825 | 0.4771 | 0.8033 |
| 0.4262 | 12.0 | 900 | 0.4625 | 0.8183 |
| 0.4371 | 13.0 | 975 | 0.4503 | 0.8217 |
| 0.4112 | 14.0 | 1050 | 0.4406 | 0.8217 |
| 0.3773 | 15.0 | 1125 | 0.4328 | 0.8183 |
| 0.3566 | 16.0 | 1200 | 0.4255 | 0.82 |
| 0.3898 | 17.0 | 1275 | 0.4160 | 0.83 |
| 0.3699 | 18.0 | 1350 | 0.4107 | 0.8233 |
| 0.3811 | 19.0 | 1425 | 0.4043 | 0.84 |
| 0.3869 | 20.0 | 1500 | 0.4001 | 0.8317 |
| 0.363 | 21.0 | 1575 | 0.3965 | 0.8383 |
| 0.3336 | 22.0 | 1650 | 0.3912 | 0.8433 |
| 0.334 | 23.0 | 1725 | 0.3876 | 0.8433 |
| 0.3158 | 24.0 | 1800 | 0.3862 | 0.845 |
| 0.309 | 25.0 | 1875 | 0.3831 | 0.8433 |
| 0.3223 | 26.0 | 1950 | 0.3821 | 0.84 |
| 0.3225 | 27.0 | 2025 | 0.3783 | 0.8417 |
| 0.3412 | 28.0 | 2100 | 0.3753 | 0.845 |
| 0.3183 | 29.0 | 2175 | 0.3735 | 0.8433 |
| 0.3062 | 30.0 | 2250 | 0.3707 | 0.8417 |
| 0.2914 | 31.0 | 2325 | 0.3702 | 0.8417 |
| 0.2994 | 32.0 | 2400 | 0.3684 | 0.84 |
| 0.3197 | 33.0 | 2475 | 0.3663 | 0.8467 |
| 0.2992 | 34.0 | 2550 | 0.3643 | 0.85 |
| 0.3245 | 35.0 | 2625 | 0.3629 | 0.8517 |
| 0.2966 | 36.0 | 2700 | 0.3625 | 0.8483 |
| 0.2581 | 37.0 | 2775 | 0.3619 | 0.8467 |
| 0.3008 | 38.0 | 2850 | 0.3609 | 0.8483 |
| 0.2884 | 39.0 | 2925 | 0.3604 | 0.85 |
| 0.3019 | 40.0 | 3000 | 0.3593 | 0.85 |
| 0.3288 | 41.0 | 3075 | 0.3590 | 0.8517 |
| 0.3129 | 42.0 | 3150 | 0.3580 | 0.855 |
| 0.2899 | 43.0 | 3225 | 0.3573 | 0.855 |
| 0.2709 | 44.0 | 3300 | 0.3568 | 0.855 |
| 0.2859 | 45.0 | 3375 | 0.3565 | 0.8533 |
| 0.3026 | 46.0 | 3450 | 0.3561 | 0.8533 |
| 0.2643 | 47.0 | 3525 | 0.3557 | 0.855 |
| 0.2626 | 48.0 | 3600 | 0.3556 | 0.855 |
| 0.2672 | 49.0 | 3675 | 0.3555 | 0.855 |
| 0.2682 | 50.0 | 3750 | 0.3554 | 0.855 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|