File size: 4,815 Bytes
c504a84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_tiny_adamax_001_fold2
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8336106489184693
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# smids_1x_deit_tiny_adamax_001_fold2

This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3785
- Accuracy: 0.8336

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8106        | 1.0   | 75   | 0.7856          | 0.5657   |
| 0.8289        | 2.0   | 150  | 0.7551          | 0.7121   |
| 0.6607        | 3.0   | 225  | 0.6595          | 0.7288   |
| 0.5966        | 4.0   | 300  | 0.5724          | 0.7671   |
| 0.5316        | 5.0   | 375  | 0.5404          | 0.7854   |
| 0.3929        | 6.0   | 450  | 0.5052          | 0.7970   |
| 0.407         | 7.0   | 525  | 0.4685          | 0.8303   |
| 0.3944        | 8.0   | 600  | 0.4515          | 0.8236   |
| 0.2836        | 9.0   | 675  | 0.4807          | 0.8070   |
| 0.2744        | 10.0  | 750  | 0.4423          | 0.8469   |
| 0.2808        | 11.0  | 825  | 0.4896          | 0.7953   |
| 0.152         | 12.0  | 900  | 0.5241          | 0.8319   |
| 0.1786        | 13.0  | 975  | 0.4922          | 0.8486   |
| 0.1372        | 14.0  | 1050 | 0.6687          | 0.8220   |
| 0.1982        | 15.0  | 1125 | 0.7505          | 0.8253   |
| 0.1651        | 16.0  | 1200 | 0.8354          | 0.8236   |
| 0.1906        | 17.0  | 1275 | 1.1129          | 0.7737   |
| 0.0899        | 18.0  | 1350 | 1.0319          | 0.8003   |
| 0.0875        | 19.0  | 1425 | 1.0962          | 0.7987   |
| 0.0186        | 20.0  | 1500 | 0.9631          | 0.8270   |
| 0.0742        | 21.0  | 1575 | 1.2547          | 0.7887   |
| 0.0229        | 22.0  | 1650 | 0.9476          | 0.8303   |
| 0.0161        | 23.0  | 1725 | 1.3651          | 0.8070   |
| 0.0097        | 24.0  | 1800 | 1.0596          | 0.8286   |
| 0.0082        | 25.0  | 1875 | 0.9954          | 0.8386   |
| 0.0036        | 26.0  | 1950 | 0.9671          | 0.8353   |
| 0.0205        | 27.0  | 2025 | 1.0817          | 0.8253   |
| 0.0109        | 28.0  | 2100 | 0.9995          | 0.8353   |
| 0.007         | 29.0  | 2175 | 1.1573          | 0.8369   |
| 0.0048        | 30.0  | 2250 | 1.2320          | 0.8303   |
| 0.0312        | 31.0  | 2325 | 1.1062          | 0.8453   |
| 0.0003        | 32.0  | 2400 | 1.3037          | 0.8436   |
| 0.0002        | 33.0  | 2475 | 1.2278          | 0.8403   |
| 0.0041        | 34.0  | 2550 | 1.3384          | 0.8286   |
| 0.0096        | 35.0  | 2625 | 1.3396          | 0.8303   |
| 0.0049        | 36.0  | 2700 | 1.3638          | 0.8403   |
| 0.0054        | 37.0  | 2775 | 1.3303          | 0.8303   |
| 0.0           | 38.0  | 2850 | 1.3273          | 0.8303   |
| 0.0017        | 39.0  | 2925 | 1.3584          | 0.8336   |
| 0.0           | 40.0  | 3000 | 1.3526          | 0.8319   |
| 0.0031        | 41.0  | 3075 | 1.3529          | 0.8303   |
| 0.0029        | 42.0  | 3150 | 1.3744          | 0.8336   |
| 0.0052        | 43.0  | 3225 | 1.3603          | 0.8319   |
| 0.0041        | 44.0  | 3300 | 1.3711          | 0.8336   |
| 0.0           | 45.0  | 3375 | 1.3741          | 0.8353   |
| 0.0002        | 46.0  | 3450 | 1.3699          | 0.8336   |
| 0.0029        | 47.0  | 3525 | 1.3797          | 0.8336   |
| 0.0           | 48.0  | 3600 | 1.3781          | 0.8336   |
| 0.0022        | 49.0  | 3675 | 1.3784          | 0.8336   |
| 0.0022        | 50.0  | 3750 | 1.3785          | 0.8336   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0