File size: 4,815 Bytes
c504a84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_tiny_adamax_001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8336106489184693
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smids_1x_deit_tiny_adamax_001_fold2
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3785
- Accuracy: 0.8336
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8106 | 1.0 | 75 | 0.7856 | 0.5657 |
| 0.8289 | 2.0 | 150 | 0.7551 | 0.7121 |
| 0.6607 | 3.0 | 225 | 0.6595 | 0.7288 |
| 0.5966 | 4.0 | 300 | 0.5724 | 0.7671 |
| 0.5316 | 5.0 | 375 | 0.5404 | 0.7854 |
| 0.3929 | 6.0 | 450 | 0.5052 | 0.7970 |
| 0.407 | 7.0 | 525 | 0.4685 | 0.8303 |
| 0.3944 | 8.0 | 600 | 0.4515 | 0.8236 |
| 0.2836 | 9.0 | 675 | 0.4807 | 0.8070 |
| 0.2744 | 10.0 | 750 | 0.4423 | 0.8469 |
| 0.2808 | 11.0 | 825 | 0.4896 | 0.7953 |
| 0.152 | 12.0 | 900 | 0.5241 | 0.8319 |
| 0.1786 | 13.0 | 975 | 0.4922 | 0.8486 |
| 0.1372 | 14.0 | 1050 | 0.6687 | 0.8220 |
| 0.1982 | 15.0 | 1125 | 0.7505 | 0.8253 |
| 0.1651 | 16.0 | 1200 | 0.8354 | 0.8236 |
| 0.1906 | 17.0 | 1275 | 1.1129 | 0.7737 |
| 0.0899 | 18.0 | 1350 | 1.0319 | 0.8003 |
| 0.0875 | 19.0 | 1425 | 1.0962 | 0.7987 |
| 0.0186 | 20.0 | 1500 | 0.9631 | 0.8270 |
| 0.0742 | 21.0 | 1575 | 1.2547 | 0.7887 |
| 0.0229 | 22.0 | 1650 | 0.9476 | 0.8303 |
| 0.0161 | 23.0 | 1725 | 1.3651 | 0.8070 |
| 0.0097 | 24.0 | 1800 | 1.0596 | 0.8286 |
| 0.0082 | 25.0 | 1875 | 0.9954 | 0.8386 |
| 0.0036 | 26.0 | 1950 | 0.9671 | 0.8353 |
| 0.0205 | 27.0 | 2025 | 1.0817 | 0.8253 |
| 0.0109 | 28.0 | 2100 | 0.9995 | 0.8353 |
| 0.007 | 29.0 | 2175 | 1.1573 | 0.8369 |
| 0.0048 | 30.0 | 2250 | 1.2320 | 0.8303 |
| 0.0312 | 31.0 | 2325 | 1.1062 | 0.8453 |
| 0.0003 | 32.0 | 2400 | 1.3037 | 0.8436 |
| 0.0002 | 33.0 | 2475 | 1.2278 | 0.8403 |
| 0.0041 | 34.0 | 2550 | 1.3384 | 0.8286 |
| 0.0096 | 35.0 | 2625 | 1.3396 | 0.8303 |
| 0.0049 | 36.0 | 2700 | 1.3638 | 0.8403 |
| 0.0054 | 37.0 | 2775 | 1.3303 | 0.8303 |
| 0.0 | 38.0 | 2850 | 1.3273 | 0.8303 |
| 0.0017 | 39.0 | 2925 | 1.3584 | 0.8336 |
| 0.0 | 40.0 | 3000 | 1.3526 | 0.8319 |
| 0.0031 | 41.0 | 3075 | 1.3529 | 0.8303 |
| 0.0029 | 42.0 | 3150 | 1.3744 | 0.8336 |
| 0.0052 | 43.0 | 3225 | 1.3603 | 0.8319 |
| 0.0041 | 44.0 | 3300 | 1.3711 | 0.8336 |
| 0.0 | 45.0 | 3375 | 1.3741 | 0.8353 |
| 0.0002 | 46.0 | 3450 | 1.3699 | 0.8336 |
| 0.0029 | 47.0 | 3525 | 1.3797 | 0.8336 |
| 0.0 | 48.0 | 3600 | 1.3781 | 0.8336 |
| 0.0022 | 49.0 | 3675 | 1.3784 | 0.8336 |
| 0.0022 | 50.0 | 3750 | 1.3785 | 0.8336 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|