--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_1x_deit_tiny_adamax_001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8935108153078203 --- # smids_1x_deit_tiny_adamax_001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8198 - Accuracy: 0.8935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6145 | 1.0 | 75 | 0.5428 | 0.7970 | | 0.3766 | 2.0 | 150 | 0.5726 | 0.7720 | | 0.4048 | 3.0 | 225 | 0.6119 | 0.7920 | | 0.3699 | 4.0 | 300 | 0.3532 | 0.8619 | | 0.3283 | 5.0 | 375 | 0.4734 | 0.8270 | | 0.2617 | 6.0 | 450 | 0.5747 | 0.8053 | | 0.2131 | 7.0 | 525 | 0.4492 | 0.8486 | | 0.1731 | 8.0 | 600 | 0.4339 | 0.8686 | | 0.1832 | 9.0 | 675 | 0.5654 | 0.8336 | | 0.1286 | 10.0 | 750 | 1.0166 | 0.7704 | | 0.0921 | 11.0 | 825 | 0.5592 | 0.8519 | | 0.0818 | 12.0 | 900 | 0.6074 | 0.8486 | | 0.1315 | 13.0 | 975 | 0.7091 | 0.8369 | | 0.0851 | 14.0 | 1050 | 0.6304 | 0.8436 | | 0.0354 | 15.0 | 1125 | 0.8000 | 0.8469 | | 0.0659 | 16.0 | 1200 | 0.7712 | 0.8586 | | 0.0297 | 17.0 | 1275 | 0.8136 | 0.8686 | | 0.058 | 18.0 | 1350 | 0.7968 | 0.8536 | | 0.0096 | 19.0 | 1425 | 0.7312 | 0.8719 | | 0.0206 | 20.0 | 1500 | 0.7618 | 0.8453 | | 0.0111 | 21.0 | 1575 | 1.0098 | 0.8336 | | 0.0053 | 22.0 | 1650 | 0.8487 | 0.8502 | | 0.0105 | 23.0 | 1725 | 0.7386 | 0.8702 | | 0.0094 | 24.0 | 1800 | 0.8515 | 0.8419 | | 0.0004 | 25.0 | 1875 | 0.8080 | 0.8636 | | 0.0177 | 26.0 | 1950 | 0.6472 | 0.8819 | | 0.0321 | 27.0 | 2025 | 0.6905 | 0.8785 | | 0.0096 | 28.0 | 2100 | 0.6932 | 0.8852 | | 0.0091 | 29.0 | 2175 | 0.7066 | 0.8869 | | 0.0059 | 30.0 | 2250 | 0.7159 | 0.8819 | | 0.0056 | 31.0 | 2325 | 0.7490 | 0.8869 | | 0.0 | 32.0 | 2400 | 0.7569 | 0.8885 | | 0.0 | 33.0 | 2475 | 0.7589 | 0.8869 | | 0.0003 | 34.0 | 2550 | 0.7519 | 0.8935 | | 0.01 | 35.0 | 2625 | 0.7808 | 0.8902 | | 0.0 | 36.0 | 2700 | 0.7653 | 0.8918 | | 0.0001 | 37.0 | 2775 | 0.7709 | 0.8902 | | 0.0 | 38.0 | 2850 | 0.7835 | 0.8885 | | 0.0016 | 39.0 | 2925 | 0.7996 | 0.8935 | | 0.0 | 40.0 | 3000 | 0.7825 | 0.8918 | | 0.0036 | 41.0 | 3075 | 0.7879 | 0.8918 | | 0.0 | 42.0 | 3150 | 0.7990 | 0.8935 | | 0.003 | 43.0 | 3225 | 0.8020 | 0.8935 | | 0.0034 | 44.0 | 3300 | 0.8080 | 0.8935 | | 0.0 | 45.0 | 3375 | 0.8073 | 0.8935 | | 0.0 | 46.0 | 3450 | 0.8161 | 0.8935 | | 0.0029 | 47.0 | 3525 | 0.8235 | 0.8918 | | 0.0 | 48.0 | 3600 | 0.8195 | 0.8935 | | 0.0023 | 49.0 | 3675 | 0.8192 | 0.8935 | | 0.0022 | 50.0 | 3750 | 0.8198 | 0.8935 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0