--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_3x_deit_small_sgd_0001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7820299500831946 --- # smids_3x_deit_small_sgd_0001_fold2 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5927 - Accuracy: 0.7820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0529 | 1.0 | 225 | 1.0464 | 0.4542 | | 1.0393 | 2.0 | 450 | 1.0215 | 0.4759 | | 1.0194 | 3.0 | 675 | 0.9971 | 0.5158 | | 0.9608 | 4.0 | 900 | 0.9729 | 0.5541 | | 0.9743 | 5.0 | 1125 | 0.9487 | 0.6023 | | 0.9002 | 6.0 | 1350 | 0.9258 | 0.6206 | | 0.8961 | 7.0 | 1575 | 0.9030 | 0.6373 | | 0.9282 | 8.0 | 1800 | 0.8813 | 0.6539 | | 0.856 | 9.0 | 2025 | 0.8605 | 0.6705 | | 0.8441 | 10.0 | 2250 | 0.8407 | 0.6772 | | 0.8723 | 11.0 | 2475 | 0.8225 | 0.6839 | | 0.7789 | 12.0 | 2700 | 0.8048 | 0.6955 | | 0.7952 | 13.0 | 2925 | 0.7885 | 0.7055 | | 0.7937 | 14.0 | 3150 | 0.7729 | 0.7155 | | 0.8007 | 15.0 | 3375 | 0.7585 | 0.7255 | | 0.769 | 16.0 | 3600 | 0.7449 | 0.7238 | | 0.7262 | 17.0 | 3825 | 0.7325 | 0.7255 | | 0.7259 | 18.0 | 4050 | 0.7208 | 0.7238 | | 0.7176 | 19.0 | 4275 | 0.7099 | 0.7255 | | 0.6791 | 20.0 | 4500 | 0.6998 | 0.7271 | | 0.7106 | 21.0 | 4725 | 0.6905 | 0.7338 | | 0.6951 | 22.0 | 4950 | 0.6819 | 0.7371 | | 0.7193 | 23.0 | 5175 | 0.6739 | 0.7471 | | 0.6759 | 24.0 | 5400 | 0.6663 | 0.7521 | | 0.6975 | 25.0 | 5625 | 0.6593 | 0.7537 | | 0.6391 | 26.0 | 5850 | 0.6529 | 0.7571 | | 0.6617 | 27.0 | 6075 | 0.6469 | 0.7604 | | 0.6434 | 28.0 | 6300 | 0.6413 | 0.7604 | | 0.6619 | 29.0 | 6525 | 0.6362 | 0.7587 | | 0.6444 | 30.0 | 6750 | 0.6315 | 0.7571 | | 0.6161 | 31.0 | 6975 | 0.6270 | 0.7604 | | 0.6193 | 32.0 | 7200 | 0.6230 | 0.7671 | | 0.5926 | 33.0 | 7425 | 0.6193 | 0.7654 | | 0.5861 | 34.0 | 7650 | 0.6159 | 0.7754 | | 0.6256 | 35.0 | 7875 | 0.6127 | 0.7770 | | 0.6099 | 36.0 | 8100 | 0.6099 | 0.7754 | | 0.5932 | 37.0 | 8325 | 0.6073 | 0.7770 | | 0.5988 | 38.0 | 8550 | 0.6049 | 0.7804 | | 0.574 | 39.0 | 8775 | 0.6028 | 0.7787 | | 0.5835 | 40.0 | 9000 | 0.6009 | 0.7787 | | 0.5292 | 41.0 | 9225 | 0.5992 | 0.7787 | | 0.586 | 42.0 | 9450 | 0.5977 | 0.7804 | | 0.5537 | 43.0 | 9675 | 0.5964 | 0.7820 | | 0.5573 | 44.0 | 9900 | 0.5953 | 0.7837 | | 0.5715 | 45.0 | 10125 | 0.5945 | 0.7820 | | 0.6072 | 46.0 | 10350 | 0.5938 | 0.7820 | | 0.5714 | 47.0 | 10575 | 0.5933 | 0.7837 | | 0.5684 | 48.0 | 10800 | 0.5929 | 0.7820 | | 0.5949 | 49.0 | 11025 | 0.5927 | 0.7820 | | 0.5423 | 50.0 | 11250 | 0.5927 | 0.7820 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2