--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_3x_deit_small_sgd_001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8569051580698835 --- # smids_3x_deit_small_sgd_001_fold2 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3562 - Accuracy: 0.8569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8599 | 1.0 | 225 | 0.8308 | 0.6789 | | 0.6572 | 2.0 | 450 | 0.6508 | 0.7488 | | 0.5628 | 3.0 | 675 | 0.5574 | 0.7920 | | 0.4888 | 4.0 | 900 | 0.5053 | 0.8053 | | 0.4209 | 5.0 | 1125 | 0.4713 | 0.8136 | | 0.3729 | 6.0 | 1350 | 0.4472 | 0.8253 | | 0.4088 | 7.0 | 1575 | 0.4292 | 0.8270 | | 0.3871 | 8.0 | 1800 | 0.4168 | 0.8353 | | 0.3605 | 9.0 | 2025 | 0.4049 | 0.8369 | | 0.2963 | 10.0 | 2250 | 0.3978 | 0.8403 | | 0.3519 | 11.0 | 2475 | 0.3893 | 0.8469 | | 0.3126 | 12.0 | 2700 | 0.3814 | 0.8536 | | 0.2889 | 13.0 | 2925 | 0.3781 | 0.8519 | | 0.3096 | 14.0 | 3150 | 0.3739 | 0.8552 | | 0.3153 | 15.0 | 3375 | 0.3694 | 0.8586 | | 0.3271 | 16.0 | 3600 | 0.3680 | 0.8619 | | 0.2697 | 17.0 | 3825 | 0.3655 | 0.8602 | | 0.2138 | 18.0 | 4050 | 0.3624 | 0.8602 | | 0.2422 | 19.0 | 4275 | 0.3602 | 0.8636 | | 0.288 | 20.0 | 4500 | 0.3609 | 0.8652 | | 0.3039 | 21.0 | 4725 | 0.3587 | 0.8619 | | 0.2907 | 22.0 | 4950 | 0.3580 | 0.8619 | | 0.3138 | 23.0 | 5175 | 0.3576 | 0.8652 | | 0.2718 | 24.0 | 5400 | 0.3569 | 0.8669 | | 0.263 | 25.0 | 5625 | 0.3551 | 0.8669 | | 0.245 | 26.0 | 5850 | 0.3538 | 0.8686 | | 0.2019 | 27.0 | 6075 | 0.3530 | 0.8636 | | 0.2353 | 28.0 | 6300 | 0.3539 | 0.8636 | | 0.2451 | 29.0 | 6525 | 0.3558 | 0.8602 | | 0.2565 | 30.0 | 6750 | 0.3536 | 0.8652 | | 0.2202 | 31.0 | 6975 | 0.3542 | 0.8636 | | 0.2433 | 32.0 | 7200 | 0.3552 | 0.8636 | | 0.2621 | 33.0 | 7425 | 0.3534 | 0.8652 | | 0.2353 | 34.0 | 7650 | 0.3541 | 0.8652 | | 0.1836 | 35.0 | 7875 | 0.3533 | 0.8602 | | 0.2199 | 36.0 | 8100 | 0.3554 | 0.8619 | | 0.2271 | 37.0 | 8325 | 0.3536 | 0.8602 | | 0.1937 | 38.0 | 8550 | 0.3541 | 0.8619 | | 0.1782 | 39.0 | 8775 | 0.3547 | 0.8586 | | 0.1988 | 40.0 | 9000 | 0.3551 | 0.8586 | | 0.1613 | 41.0 | 9225 | 0.3546 | 0.8602 | | 0.1997 | 42.0 | 9450 | 0.3550 | 0.8586 | | 0.1938 | 43.0 | 9675 | 0.3554 | 0.8569 | | 0.1972 | 44.0 | 9900 | 0.3557 | 0.8586 | | 0.2519 | 45.0 | 10125 | 0.3555 | 0.8569 | | 0.2003 | 46.0 | 10350 | 0.3557 | 0.8569 | | 0.1846 | 47.0 | 10575 | 0.3560 | 0.8586 | | 0.1808 | 48.0 | 10800 | 0.3561 | 0.8569 | | 0.2273 | 49.0 | 11025 | 0.3561 | 0.8569 | | 0.1583 | 50.0 | 11250 | 0.3562 | 0.8569 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2