--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_3x_deit_tiny_adamax_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8714524207011686 --- # smids_3x_deit_tiny_adamax_00001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9289 - Accuracy: 0.8715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.49 | 1.0 | 226 | 0.4492 | 0.8013 | | 0.3613 | 2.0 | 452 | 0.3379 | 0.8614 | | 0.2434 | 3.0 | 678 | 0.3074 | 0.8648 | | 0.2553 | 4.0 | 904 | 0.3243 | 0.8648 | | 0.2473 | 5.0 | 1130 | 0.2827 | 0.8831 | | 0.1686 | 6.0 | 1356 | 0.3078 | 0.8765 | | 0.1222 | 7.0 | 1582 | 0.3023 | 0.8998 | | 0.1406 | 8.0 | 1808 | 0.3325 | 0.8865 | | 0.0989 | 9.0 | 2034 | 0.3862 | 0.8798 | | 0.0281 | 10.0 | 2260 | 0.3985 | 0.8748 | | 0.0373 | 11.0 | 2486 | 0.4395 | 0.8831 | | 0.0324 | 12.0 | 2712 | 0.4479 | 0.8898 | | 0.0085 | 13.0 | 2938 | 0.5150 | 0.8865 | | 0.0336 | 14.0 | 3164 | 0.5239 | 0.8831 | | 0.0184 | 15.0 | 3390 | 0.5580 | 0.8798 | | 0.0187 | 16.0 | 3616 | 0.6394 | 0.8798 | | 0.0341 | 17.0 | 3842 | 0.7055 | 0.8715 | | 0.0009 | 18.0 | 4068 | 0.6833 | 0.8698 | | 0.0242 | 19.0 | 4294 | 0.6897 | 0.8731 | | 0.0002 | 20.0 | 4520 | 0.7463 | 0.8715 | | 0.0021 | 21.0 | 4746 | 0.7865 | 0.8664 | | 0.0168 | 22.0 | 4972 | 0.7905 | 0.8715 | | 0.0077 | 23.0 | 5198 | 0.7986 | 0.8715 | | 0.0002 | 24.0 | 5424 | 0.8358 | 0.8715 | | 0.0002 | 25.0 | 5650 | 0.8300 | 0.8698 | | 0.0001 | 26.0 | 5876 | 0.8435 | 0.8681 | | 0.0001 | 27.0 | 6102 | 0.8418 | 0.8681 | | 0.0001 | 28.0 | 6328 | 0.8696 | 0.8681 | | 0.0 | 29.0 | 6554 | 0.8706 | 0.8698 | | 0.0001 | 30.0 | 6780 | 0.9033 | 0.8698 | | 0.0001 | 31.0 | 7006 | 0.9296 | 0.8681 | | 0.0001 | 32.0 | 7232 | 0.8999 | 0.8698 | | 0.0096 | 33.0 | 7458 | 0.9062 | 0.8681 | | 0.0001 | 34.0 | 7684 | 0.9009 | 0.8715 | | 0.0 | 35.0 | 7910 | 0.8975 | 0.8765 | | 0.0 | 36.0 | 8136 | 0.9003 | 0.8748 | | 0.0 | 37.0 | 8362 | 0.9103 | 0.8731 | | 0.0 | 38.0 | 8588 | 0.9226 | 0.8664 | | 0.0 | 39.0 | 8814 | 0.9185 | 0.8698 | | 0.0 | 40.0 | 9040 | 0.9208 | 0.8715 | | 0.0079 | 41.0 | 9266 | 0.9347 | 0.8698 | | 0.0103 | 42.0 | 9492 | 0.9073 | 0.8731 | | 0.0 | 43.0 | 9718 | 0.9457 | 0.8664 | | 0.0 | 44.0 | 9944 | 0.9277 | 0.8698 | | 0.0 | 45.0 | 10170 | 0.9217 | 0.8715 | | 0.0 | 46.0 | 10396 | 0.9203 | 0.8715 | | 0.0 | 47.0 | 10622 | 0.9223 | 0.8715 | | 0.0 | 48.0 | 10848 | 0.9286 | 0.8715 | | 0.0 | 49.0 | 11074 | 0.9289 | 0.8715 | | 0.0 | 50.0 | 11300 | 0.9289 | 0.8715 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2