--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_small_adamax_0001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8983333333333333 --- # smids_5x_deit_small_adamax_0001_fold3 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0059 - Accuracy: 0.8983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1525 | 1.0 | 750 | 0.2697 | 0.895 | | 0.1282 | 2.0 | 1500 | 0.3452 | 0.8917 | | 0.0382 | 3.0 | 2250 | 0.4781 | 0.89 | | 0.0664 | 4.0 | 3000 | 0.6005 | 0.8917 | | 0.0139 | 5.0 | 3750 | 0.6269 | 0.8983 | | 0.0003 | 6.0 | 4500 | 0.7710 | 0.9017 | | 0.0029 | 7.0 | 5250 | 0.7996 | 0.89 | | 0.0177 | 8.0 | 6000 | 0.7898 | 0.9033 | | 0.0001 | 9.0 | 6750 | 0.7240 | 0.8983 | | 0.0001 | 10.0 | 7500 | 0.8037 | 0.9133 | | 0.0 | 11.0 | 8250 | 0.7846 | 0.91 | | 0.0005 | 12.0 | 9000 | 0.9174 | 0.885 | | 0.04 | 13.0 | 9750 | 0.8629 | 0.8983 | | 0.0005 | 14.0 | 10500 | 0.8319 | 0.895 | | 0.0 | 15.0 | 11250 | 0.8174 | 0.91 | | 0.0 | 16.0 | 12000 | 0.8650 | 0.9017 | | 0.0 | 17.0 | 12750 | 0.7601 | 0.9133 | | 0.0 | 18.0 | 13500 | 0.9296 | 0.8867 | | 0.0 | 19.0 | 14250 | 0.8663 | 0.9033 | | 0.0 | 20.0 | 15000 | 0.9126 | 0.895 | | 0.0 | 21.0 | 15750 | 0.8974 | 0.8983 | | 0.0 | 22.0 | 16500 | 0.9203 | 0.8967 | | 0.0 | 23.0 | 17250 | 0.8786 | 0.9033 | | 0.0 | 24.0 | 18000 | 0.8565 | 0.9017 | | 0.0 | 25.0 | 18750 | 0.9193 | 0.89 | | 0.0 | 26.0 | 19500 | 0.9069 | 0.895 | | 0.0 | 27.0 | 20250 | 0.8841 | 0.9 | | 0.0 | 28.0 | 21000 | 0.9282 | 0.895 | | 0.0 | 29.0 | 21750 | 0.9329 | 0.8983 | | 0.0 | 30.0 | 22500 | 0.9485 | 0.9017 | | 0.0 | 31.0 | 23250 | 0.9410 | 0.8967 | | 0.0 | 32.0 | 24000 | 0.9299 | 0.9 | | 0.0 | 33.0 | 24750 | 0.9416 | 0.8983 | | 0.0 | 34.0 | 25500 | 0.9468 | 0.8967 | | 0.0 | 35.0 | 26250 | 0.9697 | 0.895 | | 0.0 | 36.0 | 27000 | 0.9684 | 0.8983 | | 0.0 | 37.0 | 27750 | 0.9718 | 0.8983 | | 0.0 | 38.0 | 28500 | 0.9758 | 0.8983 | | 0.0 | 39.0 | 29250 | 0.9793 | 0.8983 | | 0.0 | 40.0 | 30000 | 0.9881 | 0.8983 | | 0.0 | 41.0 | 30750 | 0.9875 | 0.8983 | | 0.0 | 42.0 | 31500 | 0.9984 | 0.8983 | | 0.0 | 43.0 | 32250 | 0.9995 | 0.8983 | | 0.0 | 44.0 | 33000 | 1.0002 | 0.8983 | | 0.0 | 45.0 | 33750 | 1.0011 | 0.8983 | | 0.0 | 46.0 | 34500 | 1.0026 | 0.8983 | | 0.0 | 47.0 | 35250 | 1.0030 | 0.8983 | | 0.0 | 48.0 | 36000 | 1.0034 | 0.8983 | | 0.0 | 49.0 | 36750 | 1.0045 | 0.8983 | | 0.0 | 50.0 | 37500 | 1.0059 | 0.8983 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2