--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_small_sgd_0001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8233333333333334 --- # smids_5x_deit_small_sgd_0001_fold4 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4830 - Accuracy: 0.8233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0422 | 1.0 | 375 | 1.0355 | 0.445 | | 0.9877 | 2.0 | 750 | 0.9987 | 0.5017 | | 0.9301 | 3.0 | 1125 | 0.9591 | 0.5367 | | 0.9069 | 4.0 | 1500 | 0.9204 | 0.5917 | | 0.8815 | 5.0 | 1875 | 0.8838 | 0.6217 | | 0.8208 | 6.0 | 2250 | 0.8478 | 0.6383 | | 0.7819 | 7.0 | 2625 | 0.8141 | 0.6817 | | 0.7955 | 8.0 | 3000 | 0.7823 | 0.7033 | | 0.7492 | 9.0 | 3375 | 0.7528 | 0.7233 | | 0.7403 | 10.0 | 3750 | 0.7259 | 0.7317 | | 0.7047 | 11.0 | 4125 | 0.7009 | 0.745 | | 0.6669 | 12.0 | 4500 | 0.6790 | 0.76 | | 0.6557 | 13.0 | 4875 | 0.6594 | 0.7667 | | 0.6563 | 14.0 | 5250 | 0.6418 | 0.77 | | 0.5999 | 15.0 | 5625 | 0.6263 | 0.7667 | | 0.589 | 16.0 | 6000 | 0.6125 | 0.77 | | 0.5618 | 17.0 | 6375 | 0.5999 | 0.7767 | | 0.5666 | 18.0 | 6750 | 0.5885 | 0.7817 | | 0.6067 | 19.0 | 7125 | 0.5784 | 0.7867 | | 0.5796 | 20.0 | 7500 | 0.5694 | 0.79 | | 0.547 | 21.0 | 7875 | 0.5612 | 0.7883 | | 0.5698 | 22.0 | 8250 | 0.5540 | 0.7867 | | 0.5377 | 23.0 | 8625 | 0.5473 | 0.7917 | | 0.5508 | 24.0 | 9000 | 0.5411 | 0.7967 | | 0.5752 | 25.0 | 9375 | 0.5355 | 0.7983 | | 0.5019 | 26.0 | 9750 | 0.5303 | 0.8 | | 0.5146 | 27.0 | 10125 | 0.5255 | 0.8017 | | 0.5114 | 28.0 | 10500 | 0.5210 | 0.8033 | | 0.4588 | 29.0 | 10875 | 0.5170 | 0.8033 | | 0.5045 | 30.0 | 11250 | 0.5133 | 0.805 | | 0.5118 | 31.0 | 11625 | 0.5098 | 0.805 | | 0.4619 | 32.0 | 12000 | 0.5067 | 0.8083 | | 0.4796 | 33.0 | 12375 | 0.5037 | 0.81 | | 0.5217 | 34.0 | 12750 | 0.5011 | 0.81 | | 0.4423 | 35.0 | 13125 | 0.4986 | 0.8133 | | 0.4692 | 36.0 | 13500 | 0.4964 | 0.815 | | 0.4889 | 37.0 | 13875 | 0.4944 | 0.815 | | 0.487 | 38.0 | 14250 | 0.4925 | 0.82 | | 0.5206 | 39.0 | 14625 | 0.4909 | 0.82 | | 0.4988 | 40.0 | 15000 | 0.4894 | 0.82 | | 0.4485 | 41.0 | 15375 | 0.4881 | 0.8217 | | 0.4284 | 42.0 | 15750 | 0.4870 | 0.8217 | | 0.4979 | 43.0 | 16125 | 0.4860 | 0.8217 | | 0.454 | 44.0 | 16500 | 0.4851 | 0.8217 | | 0.4865 | 45.0 | 16875 | 0.4845 | 0.8217 | | 0.4847 | 46.0 | 17250 | 0.4839 | 0.8217 | | 0.5681 | 47.0 | 17625 | 0.4835 | 0.8217 | | 0.4795 | 48.0 | 18000 | 0.4832 | 0.8217 | | 0.4757 | 49.0 | 18375 | 0.4831 | 0.8233 | | 0.4471 | 50.0 | 18750 | 0.4830 | 0.8233 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2