--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_tiny_adamax_00001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8801996672212978 --- # smids_5x_deit_tiny_adamax_00001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9976 - Accuracy: 0.8802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.452 | 1.0 | 375 | 0.3866 | 0.8403 | | 0.2847 | 2.0 | 750 | 0.3266 | 0.8602 | | 0.2241 | 3.0 | 1125 | 0.3108 | 0.8602 | | 0.1563 | 4.0 | 1500 | 0.3106 | 0.8785 | | 0.1317 | 5.0 | 1875 | 0.3206 | 0.8802 | | 0.0972 | 6.0 | 2250 | 0.3257 | 0.8835 | | 0.0878 | 7.0 | 2625 | 0.3684 | 0.8752 | | 0.0825 | 8.0 | 3000 | 0.3750 | 0.8819 | | 0.0645 | 9.0 | 3375 | 0.4082 | 0.8852 | | 0.0305 | 10.0 | 3750 | 0.4870 | 0.8769 | | 0.0215 | 11.0 | 4125 | 0.4928 | 0.8869 | | 0.037 | 12.0 | 4500 | 0.5391 | 0.8802 | | 0.0369 | 13.0 | 4875 | 0.6212 | 0.8719 | | 0.0169 | 14.0 | 5250 | 0.6496 | 0.8819 | | 0.0205 | 15.0 | 5625 | 0.7009 | 0.8769 | | 0.0006 | 16.0 | 6000 | 0.7474 | 0.8735 | | 0.0156 | 17.0 | 6375 | 0.7683 | 0.8735 | | 0.0004 | 18.0 | 6750 | 0.7918 | 0.8752 | | 0.0002 | 19.0 | 7125 | 0.8032 | 0.8819 | | 0.0009 | 20.0 | 7500 | 0.8199 | 0.8835 | | 0.0001 | 21.0 | 7875 | 0.8709 | 0.8835 | | 0.0001 | 22.0 | 8250 | 0.8571 | 0.8785 | | 0.0001 | 23.0 | 8625 | 0.8684 | 0.8785 | | 0.0001 | 24.0 | 9000 | 0.8915 | 0.8785 | | 0.0 | 25.0 | 9375 | 0.9054 | 0.8785 | | 0.0001 | 26.0 | 9750 | 0.9181 | 0.8802 | | 0.0 | 27.0 | 10125 | 0.9162 | 0.8785 | | 0.0 | 28.0 | 10500 | 0.9185 | 0.8802 | | 0.0 | 29.0 | 10875 | 0.9373 | 0.8769 | | 0.0 | 30.0 | 11250 | 0.9455 | 0.8819 | | 0.0093 | 31.0 | 11625 | 0.9243 | 0.8785 | | 0.025 | 32.0 | 12000 | 0.9658 | 0.8769 | | 0.0144 | 33.0 | 12375 | 0.9598 | 0.8785 | | 0.0 | 34.0 | 12750 | 0.9760 | 0.8802 | | 0.0 | 35.0 | 13125 | 0.9707 | 0.8852 | | 0.0 | 36.0 | 13500 | 0.9857 | 0.8785 | | 0.0 | 37.0 | 13875 | 0.9774 | 0.8819 | | 0.0 | 38.0 | 14250 | 0.9769 | 0.8785 | | 0.0 | 39.0 | 14625 | 0.9854 | 0.8835 | | 0.0009 | 40.0 | 15000 | 0.9942 | 0.8769 | | 0.0 | 41.0 | 15375 | 0.9901 | 0.8802 | | 0.0117 | 42.0 | 15750 | 0.9844 | 0.8785 | | 0.0061 | 43.0 | 16125 | 0.9978 | 0.8785 | | 0.0061 | 44.0 | 16500 | 1.0013 | 0.8802 | | 0.0108 | 45.0 | 16875 | 1.0012 | 0.8769 | | 0.0 | 46.0 | 17250 | 0.9950 | 0.8785 | | 0.0106 | 47.0 | 17625 | 0.9952 | 0.8785 | | 0.0 | 48.0 | 18000 | 0.9951 | 0.8785 | | 0.0097 | 49.0 | 18375 | 0.9966 | 0.8785 | | 0.0033 | 50.0 | 18750 | 0.9976 | 0.8802 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2