File size: 4,871 Bytes
3cf0bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_tiny_adamax_00001_fold3
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9016666666666666
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# smids_5x_deit_tiny_adamax_00001_fold3

This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8603
- Accuracy: 0.9017

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3577        | 1.0   | 375   | 0.3812          | 0.845    |
| 0.2949        | 2.0   | 750   | 0.2946          | 0.89     |
| 0.1716        | 3.0   | 1125  | 0.2716          | 0.8933   |
| 0.1812        | 4.0   | 1500  | 0.2588          | 0.9117   |
| 0.1483        | 5.0   | 1875  | 0.2753          | 0.8983   |
| 0.1406        | 6.0   | 2250  | 0.2966          | 0.9017   |
| 0.1265        | 7.0   | 2625  | 0.3030          | 0.9      |
| 0.1011        | 8.0   | 3000  | 0.3279          | 0.9017   |
| 0.0557        | 9.0   | 3375  | 0.3594          | 0.9017   |
| 0.0231        | 10.0  | 3750  | 0.3998          | 0.91     |
| 0.0281        | 11.0  | 4125  | 0.4583          | 0.89     |
| 0.0358        | 12.0  | 4500  | 0.4967          | 0.8967   |
| 0.0189        | 13.0  | 4875  | 0.5490          | 0.9017   |
| 0.0022        | 14.0  | 5250  | 0.5821          | 0.8967   |
| 0.0008        | 15.0  | 5625  | 0.6304          | 0.9017   |
| 0.0004        | 16.0  | 6000  | 0.6440          | 0.9017   |
| 0.0002        | 17.0  | 6375  | 0.6611          | 0.9017   |
| 0.0001        | 18.0  | 6750  | 0.6624          | 0.905    |
| 0.0008        | 19.0  | 7125  | 0.7059          | 0.9067   |
| 0.0001        | 20.0  | 7500  | 0.6928          | 0.9067   |
| 0.0001        | 21.0  | 7875  | 0.7172          | 0.905    |
| 0.0           | 22.0  | 8250  | 0.7360          | 0.905    |
| 0.0192        | 23.0  | 8625  | 0.7528          | 0.905    |
| 0.0           | 24.0  | 9000  | 0.7580          | 0.9      |
| 0.0           | 25.0  | 9375  | 0.7737          | 0.9017   |
| 0.0           | 26.0  | 9750  | 0.7755          | 0.9017   |
| 0.0           | 27.0  | 10125 | 0.7892          | 0.9      |
| 0.0           | 28.0  | 10500 | 0.7918          | 0.905    |
| 0.0           | 29.0  | 10875 | 0.8126          | 0.9017   |
| 0.0178        | 30.0  | 11250 | 0.8092          | 0.8967   |
| 0.0           | 31.0  | 11625 | 0.8243          | 0.9033   |
| 0.0           | 32.0  | 12000 | 0.8257          | 0.9017   |
| 0.0           | 33.0  | 12375 | 0.8314          | 0.9017   |
| 0.0           | 34.0  | 12750 | 0.8261          | 0.9033   |
| 0.0           | 35.0  | 13125 | 0.8406          | 0.9033   |
| 0.0           | 36.0  | 13500 | 0.8423          | 0.9033   |
| 0.0           | 37.0  | 13875 | 0.8427          | 0.905    |
| 0.0           | 38.0  | 14250 | 0.8439          | 0.9017   |
| 0.0           | 39.0  | 14625 | 0.8460          | 0.9033   |
| 0.0006        | 40.0  | 15000 | 0.8531          | 0.905    |
| 0.0           | 41.0  | 15375 | 0.8498          | 0.9033   |
| 0.0           | 42.0  | 15750 | 0.8562          | 0.9017   |
| 0.0           | 43.0  | 16125 | 0.8549          | 0.9033   |
| 0.0           | 44.0  | 16500 | 0.8565          | 0.905    |
| 0.0           | 45.0  | 16875 | 0.8586          | 0.905    |
| 0.0           | 46.0  | 17250 | 0.8582          | 0.9017   |
| 0.0           | 47.0  | 17625 | 0.8601          | 0.9017   |
| 0.0           | 48.0  | 18000 | 0.8602          | 0.9017   |
| 0.0           | 49.0  | 18375 | 0.8603          | 0.9017   |
| 0.0           | 50.0  | 18750 | 0.8603          | 0.9017   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2