--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_tiny_adamax_001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8901830282861897 --- # smids_5x_deit_tiny_adamax_001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1513 - Accuracy: 0.8902 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3758 | 1.0 | 375 | 0.3275 | 0.8619 | | 0.3244 | 2.0 | 750 | 0.4328 | 0.8403 | | 0.3305 | 3.0 | 1125 | 0.3559 | 0.8586 | | 0.2057 | 4.0 | 1500 | 0.3484 | 0.8752 | | 0.2037 | 5.0 | 1875 | 0.3334 | 0.8918 | | 0.109 | 6.0 | 2250 | 0.3396 | 0.8869 | | 0.1296 | 7.0 | 2625 | 0.4274 | 0.8719 | | 0.1447 | 8.0 | 3000 | 0.4555 | 0.8569 | | 0.0656 | 9.0 | 3375 | 0.4650 | 0.8869 | | 0.0303 | 10.0 | 3750 | 0.5987 | 0.8602 | | 0.0379 | 11.0 | 4125 | 0.5753 | 0.8835 | | 0.0368 | 12.0 | 4500 | 0.6264 | 0.8669 | | 0.0495 | 13.0 | 4875 | 0.6979 | 0.8569 | | 0.0376 | 14.0 | 5250 | 0.7442 | 0.8636 | | 0.0604 | 15.0 | 5625 | 0.8422 | 0.8636 | | 0.0353 | 16.0 | 6000 | 0.7521 | 0.8852 | | 0.0761 | 17.0 | 6375 | 0.7920 | 0.8752 | | 0.004 | 18.0 | 6750 | 1.0354 | 0.8702 | | 0.0148 | 19.0 | 7125 | 0.7279 | 0.8785 | | 0.0237 | 20.0 | 7500 | 0.7424 | 0.8735 | | 0.0011 | 21.0 | 7875 | 0.7919 | 0.8802 | | 0.0017 | 22.0 | 8250 | 0.8106 | 0.8918 | | 0.0086 | 23.0 | 8625 | 0.8451 | 0.8735 | | 0.0037 | 24.0 | 9000 | 0.8674 | 0.8735 | | 0.0002 | 25.0 | 9375 | 0.8393 | 0.8869 | | 0.0036 | 26.0 | 9750 | 0.8897 | 0.8902 | | 0.0019 | 27.0 | 10125 | 0.8685 | 0.8885 | | 0.0 | 28.0 | 10500 | 0.8366 | 0.8902 | | 0.0007 | 29.0 | 10875 | 0.9524 | 0.8985 | | 0.0002 | 30.0 | 11250 | 0.9036 | 0.8918 | | 0.0073 | 31.0 | 11625 | 0.9747 | 0.8935 | | 0.0057 | 32.0 | 12000 | 0.9823 | 0.8885 | | 0.0116 | 33.0 | 12375 | 0.9806 | 0.8935 | | 0.0 | 34.0 | 12750 | 1.0179 | 0.8885 | | 0.0 | 35.0 | 13125 | 1.0978 | 0.8785 | | 0.0 | 36.0 | 13500 | 0.9957 | 0.8852 | | 0.0 | 37.0 | 13875 | 1.0261 | 0.8902 | | 0.0 | 38.0 | 14250 | 1.0512 | 0.8885 | | 0.0 | 39.0 | 14625 | 1.0513 | 0.8902 | | 0.0035 | 40.0 | 15000 | 1.0782 | 0.8902 | | 0.0 | 41.0 | 15375 | 1.0839 | 0.8885 | | 0.0032 | 42.0 | 15750 | 1.1078 | 0.8885 | | 0.0027 | 43.0 | 16125 | 1.1099 | 0.8902 | | 0.0028 | 44.0 | 16500 | 1.1218 | 0.8902 | | 0.0032 | 45.0 | 16875 | 1.1207 | 0.8885 | | 0.0 | 46.0 | 17250 | 1.1330 | 0.8885 | | 0.0059 | 47.0 | 17625 | 1.1405 | 0.8885 | | 0.0 | 48.0 | 18000 | 1.1472 | 0.8885 | | 0.0026 | 49.0 | 18375 | 1.1507 | 0.8885 | | 0.0022 | 50.0 | 18750 | 1.1513 | 0.8902 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2