--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_tiny_rms_00001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8783333333333333 --- # smids_5x_deit_tiny_rms_00001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4112 - Accuracy: 0.8783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2498 | 1.0 | 375 | 0.3750 | 0.8583 | | 0.2126 | 2.0 | 750 | 0.3946 | 0.8617 | | 0.0815 | 3.0 | 1125 | 0.3928 | 0.8817 | | 0.1183 | 4.0 | 1500 | 0.4272 | 0.8733 | | 0.1029 | 5.0 | 1875 | 0.5782 | 0.8833 | | 0.0245 | 6.0 | 2250 | 0.6426 | 0.8867 | | 0.0551 | 7.0 | 2625 | 0.8096 | 0.8733 | | 0.0319 | 8.0 | 3000 | 0.8011 | 0.8733 | | 0.0533 | 9.0 | 3375 | 0.8429 | 0.875 | | 0.0056 | 10.0 | 3750 | 0.9672 | 0.8617 | | 0.0136 | 11.0 | 4125 | 1.0120 | 0.8667 | | 0.0031 | 12.0 | 4500 | 0.9881 | 0.87 | | 0.0176 | 13.0 | 4875 | 1.1184 | 0.8767 | | 0.0127 | 14.0 | 5250 | 1.1325 | 0.8583 | | 0.0003 | 15.0 | 5625 | 1.2848 | 0.8683 | | 0.0058 | 16.0 | 6000 | 1.1232 | 0.87 | | 0.0002 | 17.0 | 6375 | 1.0571 | 0.8817 | | 0.0421 | 18.0 | 6750 | 1.2079 | 0.8717 | | 0.0004 | 19.0 | 7125 | 1.2753 | 0.87 | | 0.0001 | 20.0 | 7500 | 1.3783 | 0.86 | | 0.0 | 21.0 | 7875 | 1.3177 | 0.865 | | 0.002 | 22.0 | 8250 | 1.3637 | 0.8633 | | 0.0002 | 23.0 | 8625 | 1.4459 | 0.87 | | 0.0005 | 24.0 | 9000 | 1.2813 | 0.875 | | 0.0 | 25.0 | 9375 | 1.2487 | 0.88 | | 0.0 | 26.0 | 9750 | 1.2405 | 0.875 | | 0.0008 | 27.0 | 10125 | 1.3345 | 0.885 | | 0.0001 | 28.0 | 10500 | 1.5106 | 0.865 | | 0.0 | 29.0 | 10875 | 1.2765 | 0.8733 | | 0.0 | 30.0 | 11250 | 1.2626 | 0.875 | | 0.0332 | 31.0 | 11625 | 1.3653 | 0.8667 | | 0.0 | 32.0 | 12000 | 1.3469 | 0.8683 | | 0.0 | 33.0 | 12375 | 1.2524 | 0.8817 | | 0.0 | 34.0 | 12750 | 1.2947 | 0.8767 | | 0.0 | 35.0 | 13125 | 1.2962 | 0.8733 | | 0.0 | 36.0 | 13500 | 1.3559 | 0.8783 | | 0.0 | 37.0 | 13875 | 1.3878 | 0.8817 | | 0.0033 | 38.0 | 14250 | 1.3553 | 0.8767 | | 0.0 | 39.0 | 14625 | 1.4121 | 0.875 | | 0.0 | 40.0 | 15000 | 1.4174 | 0.875 | | 0.0 | 41.0 | 15375 | 1.4132 | 0.875 | | 0.0 | 42.0 | 15750 | 1.4182 | 0.8767 | | 0.0 | 43.0 | 16125 | 1.4186 | 0.8767 | | 0.0 | 44.0 | 16500 | 1.4200 | 0.8767 | | 0.0 | 45.0 | 16875 | 1.4125 | 0.8783 | | 0.0 | 46.0 | 17250 | 1.4134 | 0.88 | | 0.0 | 47.0 | 17625 | 1.4114 | 0.8783 | | 0.0 | 48.0 | 18000 | 1.4108 | 0.8783 | | 0.0 | 49.0 | 18375 | 1.4113 | 0.8783 | | 0.0 | 50.0 | 18750 | 1.4112 | 0.8783 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2