File size: 4,861 Bytes
23b56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_tiny_rms_001_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7562604340567612
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# smids_5x_deit_tiny_rms_001_fold1

This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6720
- Accuracy: 0.7563

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.9519        | 1.0   | 376   | 0.9699          | 0.4808   |
| 0.8617        | 2.0   | 752   | 0.8618          | 0.5392   |
| 0.8149        | 3.0   | 1128  | 0.8048          | 0.5893   |
| 0.8075        | 4.0   | 1504  | 0.7999          | 0.5609   |
| 0.9135        | 5.0   | 1880  | 0.7865          | 0.6160   |
| 0.783         | 6.0   | 2256  | 0.8586          | 0.5893   |
| 0.725         | 7.0   | 2632  | 0.8054          | 0.6227   |
| 0.6972        | 8.0   | 3008  | 0.7248          | 0.6444   |
| 0.72          | 9.0   | 3384  | 0.7167          | 0.6661   |
| 0.7292        | 10.0  | 3760  | 0.7657          | 0.6795   |
| 0.645         | 11.0  | 4136  | 0.6894          | 0.6861   |
| 0.7059        | 12.0  | 4512  | 0.7066          | 0.6928   |
| 0.7086        | 13.0  | 4888  | 0.7125          | 0.6995   |
| 0.6705        | 14.0  | 5264  | 0.6700          | 0.7078   |
| 0.6566        | 15.0  | 5640  | 0.6881          | 0.6861   |
| 0.5734        | 16.0  | 6016  | 0.7052          | 0.6694   |
| 0.5199        | 17.0  | 6392  | 0.7378          | 0.6628   |
| 0.659         | 18.0  | 6768  | 0.6486          | 0.7112   |
| 0.6288        | 19.0  | 7144  | 0.7161          | 0.6528   |
| 0.566         | 20.0  | 7520  | 0.6171          | 0.7212   |
| 0.6474        | 21.0  | 7896  | 0.6184          | 0.7262   |
| 0.5542        | 22.0  | 8272  | 0.6826          | 0.6861   |
| 0.5759        | 23.0  | 8648  | 0.6131          | 0.7229   |
| 0.6266        | 24.0  | 9024  | 0.6647          | 0.7112   |
| 0.6436        | 25.0  | 9400  | 0.6298          | 0.7078   |
| 0.5378        | 26.0  | 9776  | 0.6147          | 0.7229   |
| 0.534         | 27.0  | 10152 | 0.6258          | 0.7179   |
| 0.4794        | 28.0  | 10528 | 0.6515          | 0.7095   |
| 0.5282        | 29.0  | 10904 | 0.6735          | 0.6912   |
| 0.4828        | 30.0  | 11280 | 0.6279          | 0.7179   |
| 0.5597        | 31.0  | 11656 | 0.6003          | 0.7295   |
| 0.5931        | 32.0  | 12032 | 0.6323          | 0.7362   |
| 0.4604        | 33.0  | 12408 | 0.6185          | 0.7446   |
| 0.473         | 34.0  | 12784 | 0.6171          | 0.7396   |
| 0.5357        | 35.0  | 13160 | 0.6139          | 0.7279   |
| 0.5273        | 36.0  | 13536 | 0.6022          | 0.7379   |
| 0.446         | 37.0  | 13912 | 0.6164          | 0.7362   |
| 0.5051        | 38.0  | 14288 | 0.6160          | 0.7329   |
| 0.5127        | 39.0  | 14664 | 0.6147          | 0.7629   |
| 0.5424        | 40.0  | 15040 | 0.5988          | 0.7579   |
| 0.4672        | 41.0  | 15416 | 0.6152          | 0.7613   |
| 0.4259        | 42.0  | 15792 | 0.6298          | 0.7429   |
| 0.4313        | 43.0  | 16168 | 0.6086          | 0.7462   |
| 0.4716        | 44.0  | 16544 | 0.6307          | 0.7496   |
| 0.4303        | 45.0  | 16920 | 0.6176          | 0.7513   |
| 0.3889        | 46.0  | 17296 | 0.6198          | 0.7479   |
| 0.4191        | 47.0  | 17672 | 0.6340          | 0.7563   |
| 0.3752        | 48.0  | 18048 | 0.6420          | 0.7596   |
| 0.3744        | 49.0  | 18424 | 0.6614          | 0.7529   |
| 0.3137        | 50.0  | 18800 | 0.6720          | 0.7563   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2