File size: 4,861 Bytes
9873806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_tiny_sgd_001_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8714524207011686
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# smids_5x_deit_tiny_sgd_001_fold1

This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3293
- Accuracy: 0.8715

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.7747        | 1.0   | 376   | 0.8081          | 0.6327   |
| 0.5327        | 2.0   | 752   | 0.5949          | 0.7462   |
| 0.4332        | 3.0   | 1128  | 0.5030          | 0.7846   |
| 0.4359        | 4.0   | 1504  | 0.4457          | 0.8097   |
| 0.3937        | 5.0   | 1880  | 0.4107          | 0.8164   |
| 0.3325        | 6.0   | 2256  | 0.3873          | 0.8297   |
| 0.2877        | 7.0   | 2632  | 0.3645          | 0.8347   |
| 0.2962        | 8.0   | 3008  | 0.3585          | 0.8397   |
| 0.3002        | 9.0   | 3384  | 0.3450          | 0.8414   |
| 0.2749        | 10.0  | 3760  | 0.3357          | 0.8514   |
| 0.2826        | 11.0  | 4136  | 0.3303          | 0.8614   |
| 0.2607        | 12.0  | 4512  | 0.3246          | 0.8664   |
| 0.2479        | 13.0  | 4888  | 0.3195          | 0.8731   |
| 0.209         | 14.0  | 5264  | 0.3192          | 0.8698   |
| 0.2492        | 15.0  | 5640  | 0.3190          | 0.8631   |
| 0.2421        | 16.0  | 6016  | 0.3201          | 0.8664   |
| 0.2313        | 17.0  | 6392  | 0.3123          | 0.8731   |
| 0.2635        | 18.0  | 6768  | 0.3189          | 0.8715   |
| 0.22          | 19.0  | 7144  | 0.3169          | 0.8698   |
| 0.1933        | 20.0  | 7520  | 0.3154          | 0.8715   |
| 0.1972        | 21.0  | 7896  | 0.3125          | 0.8748   |
| 0.2184        | 22.0  | 8272  | 0.3238          | 0.8681   |
| 0.2395        | 23.0  | 8648  | 0.3208          | 0.8715   |
| 0.2148        | 24.0  | 9024  | 0.3152          | 0.8681   |
| 0.2046        | 25.0  | 9400  | 0.3215          | 0.8698   |
| 0.2137        | 26.0  | 9776  | 0.3154          | 0.8681   |
| 0.1523        | 27.0  | 10152 | 0.3167          | 0.8731   |
| 0.1766        | 28.0  | 10528 | 0.3160          | 0.8715   |
| 0.1896        | 29.0  | 10904 | 0.3190          | 0.8715   |
| 0.157         | 30.0  | 11280 | 0.3195          | 0.8698   |
| 0.1522        | 31.0  | 11656 | 0.3183          | 0.8731   |
| 0.1888        | 32.0  | 12032 | 0.3211          | 0.8715   |
| 0.1615        | 33.0  | 12408 | 0.3233          | 0.8681   |
| 0.1503        | 34.0  | 12784 | 0.3209          | 0.8731   |
| 0.1481        | 35.0  | 13160 | 0.3244          | 0.8698   |
| 0.1788        | 36.0  | 13536 | 0.3242          | 0.8681   |
| 0.1497        | 37.0  | 13912 | 0.3239          | 0.8748   |
| 0.1343        | 38.0  | 14288 | 0.3226          | 0.8748   |
| 0.1659        | 39.0  | 14664 | 0.3268          | 0.8748   |
| 0.1781        | 40.0  | 15040 | 0.3250          | 0.8698   |
| 0.1644        | 41.0  | 15416 | 0.3283          | 0.8731   |
| 0.1354        | 42.0  | 15792 | 0.3269          | 0.8731   |
| 0.1533        | 43.0  | 16168 | 0.3272          | 0.8731   |
| 0.1541        | 44.0  | 16544 | 0.3272          | 0.8748   |
| 0.2043        | 45.0  | 16920 | 0.3294          | 0.8731   |
| 0.2146        | 46.0  | 17296 | 0.3299          | 0.8731   |
| 0.154         | 47.0  | 17672 | 0.3285          | 0.8715   |
| 0.1593        | 48.0  | 18048 | 0.3296          | 0.8731   |
| 0.1388        | 49.0  | 18424 | 0.3295          | 0.8731   |
| 0.1123        | 50.0  | 18800 | 0.3293          | 0.8715   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2