File size: 4,861 Bytes
8aa36d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_deit_tiny_sgd_001_fold2
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8818635607321131
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# smids_5x_deit_tiny_sgd_001_fold2

This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3259
- Accuracy: 0.8819

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.8524        | 1.0   | 375   | 0.7691          | 0.6689   |
| 0.5007        | 2.0   | 750   | 0.5539          | 0.7804   |
| 0.4114        | 3.0   | 1125  | 0.4742          | 0.8070   |
| 0.3629        | 4.0   | 1500  | 0.4296          | 0.8286   |
| 0.3623        | 5.0   | 1875  | 0.3981          | 0.8469   |
| 0.3098        | 6.0   | 2250  | 0.3783          | 0.8502   |
| 0.3017        | 7.0   | 2625  | 0.3643          | 0.8453   |
| 0.3224        | 8.0   | 3000  | 0.3602          | 0.8519   |
| 0.2666        | 9.0   | 3375  | 0.3471          | 0.8586   |
| 0.2737        | 10.0  | 3750  | 0.3436          | 0.8552   |
| 0.2547        | 11.0  | 4125  | 0.3356          | 0.8669   |
| 0.2986        | 12.0  | 4500  | 0.3379          | 0.8602   |
| 0.2268        | 13.0  | 4875  | 0.3304          | 0.8669   |
| 0.2538        | 14.0  | 5250  | 0.3304          | 0.8702   |
| 0.2279        | 15.0  | 5625  | 0.3282          | 0.8602   |
| 0.1964        | 16.0  | 6000  | 0.3276          | 0.8719   |
| 0.2475        | 17.0  | 6375  | 0.3297          | 0.8652   |
| 0.2224        | 18.0  | 6750  | 0.3277          | 0.8669   |
| 0.1863        | 19.0  | 7125  | 0.3205          | 0.8686   |
| 0.2493        | 20.0  | 7500  | 0.3208          | 0.8752   |
| 0.1873        | 21.0  | 7875  | 0.3214          | 0.8769   |
| 0.1921        | 22.0  | 8250  | 0.3223          | 0.8735   |
| 0.2083        | 23.0  | 8625  | 0.3204          | 0.8735   |
| 0.1865        | 24.0  | 9000  | 0.3201          | 0.8702   |
| 0.1643        | 25.0  | 9375  | 0.3196          | 0.8802   |
| 0.2115        | 26.0  | 9750  | 0.3209          | 0.8785   |
| 0.2108        | 27.0  | 10125 | 0.3192          | 0.8802   |
| 0.1576        | 28.0  | 10500 | 0.3201          | 0.8802   |
| 0.1807        | 29.0  | 10875 | 0.3220          | 0.8785   |
| 0.1891        | 30.0  | 11250 | 0.3216          | 0.8802   |
| 0.1864        | 31.0  | 11625 | 0.3224          | 0.8835   |
| 0.1759        | 32.0  | 12000 | 0.3215          | 0.8852   |
| 0.1618        | 33.0  | 12375 | 0.3224          | 0.8835   |
| 0.1343        | 34.0  | 12750 | 0.3219          | 0.8835   |
| 0.1642        | 35.0  | 13125 | 0.3213          | 0.8852   |
| 0.1538        | 36.0  | 13500 | 0.3239          | 0.8785   |
| 0.1527        | 37.0  | 13875 | 0.3229          | 0.8852   |
| 0.1581        | 38.0  | 14250 | 0.3248          | 0.8802   |
| 0.135         | 39.0  | 14625 | 0.3238          | 0.8852   |
| 0.1591        | 40.0  | 15000 | 0.3237          | 0.8835   |
| 0.1366        | 41.0  | 15375 | 0.3243          | 0.8819   |
| 0.1361        | 42.0  | 15750 | 0.3249          | 0.8785   |
| 0.1751        | 43.0  | 16125 | 0.3245          | 0.8835   |
| 0.135         | 44.0  | 16500 | 0.3255          | 0.8819   |
| 0.1208        | 45.0  | 16875 | 0.3256          | 0.8819   |
| 0.1748        | 46.0  | 17250 | 0.3261          | 0.8819   |
| 0.1449        | 47.0  | 17625 | 0.3264          | 0.8785   |
| 0.1594        | 48.0  | 18000 | 0.3263          | 0.8785   |
| 0.1892        | 49.0  | 18375 | 0.3260          | 0.8819   |
| 0.1218        | 50.0  | 18750 | 0.3259          | 0.8819   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2