hlyu commited on
Commit
1c0f906
·
1 Parent(s): c6c3093

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ ---
9
+
10
+ # msmarco-bert-base-dot-v5
11
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and was designed for **semantic search**. It has been trained on 500K (query, answer) pairs from the [MS MARCO dataset](https://github.com/microsoft/MSMARCO-Passage-Ranking/). For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html)
12
+
13
+
14
+ ## Usage (Sentence-Transformers)
15
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
16
+
17
+ ```
18
+ pip install -U sentence-transformers
19
+ ```
20
+
21
+ Then you can use the model like this:
22
+ ```python
23
+ from sentence_transformers import SentenceTransformer, util
24
+
25
+ query = "How many people live in London?"
26
+ docs = ["Around 9 Million people live in London", "London is known for its financial district"]
27
+
28
+ #Load the model
29
+ model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
30
+
31
+ #Encode query and documents
32
+ query_emb = model.encode(query)
33
+ doc_emb = model.encode(docs)
34
+
35
+ #Compute dot score between query and all document embeddings
36
+ scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
37
+
38
+ #Combine docs & scores
39
+ doc_score_pairs = list(zip(docs, scores))
40
+
41
+ #Sort by decreasing score
42
+ doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
43
+
44
+ #Output passages & scores
45
+ print("Query:", query)
46
+ for doc, score in doc_score_pairs:
47
+ print(score, doc)
48
+ ```
49
+
50
+
51
+ ## Usage (HuggingFace Transformers)
52
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings.
53
+
54
+ ```python
55
+ from transformers import AutoTokenizer, AutoModel
56
+ import torch
57
+
58
+ #Mean Pooling - Take attention mask into account for correct averaging
59
+ def mean_pooling(model_output, attention_mask):
60
+ token_embeddings = model_output.last_hidden_state
61
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
62
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
63
+
64
+
65
+ #Encode text
66
+ def encode(texts):
67
+ # Tokenize sentences
68
+ encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
69
+
70
+ # Compute token embeddings
71
+ with torch.no_grad():
72
+ model_output = model(**encoded_input, return_dict=True)
73
+
74
+ # Perform pooling
75
+ embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
76
+
77
+ return embeddings
78
+
79
+
80
+ # Sentences we want sentence embeddings for
81
+ query = "How many people live in London?"
82
+ docs = ["Around 9 Million people live in London", "London is known for its financial district"]
83
+
84
+ # Load model from HuggingFace Hub
85
+ tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/msmarco-bert-base-dot-v5")
86
+ model = AutoModel.from_pretrained("sentence-transformers/msmarco-bert-base-dot-v5")
87
+
88
+ #Encode query and docs
89
+ query_emb = encode(query)
90
+ doc_emb = encode(docs)
91
+
92
+ #Compute dot score between query and all document embeddings
93
+ scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()
94
+
95
+ #Combine docs & scores
96
+ doc_score_pairs = list(zip(docs, scores))
97
+
98
+ #Sort by decreasing score
99
+ doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
100
+
101
+ #Output passages & scores
102
+ print("Query:", query)
103
+ for doc, score in doc_score_pairs:
104
+ print(score, doc)
105
+ ```
106
+
107
+ ## Technical Details
108
+
109
+ In the following some technical details how this model must be used:
110
+
111
+ | Setting | Value |
112
+ | --- | :---: |
113
+ | Dimensions | 768 |
114
+ | Max Sequence Length | 512 |
115
+ | Produces normalized embeddings | No |
116
+ | Pooling-Method | Mean pooling |
117
+ | Suitable score functions | dot-product (e.g. `util.dot_score`) |
118
+
119
+
120
+ ## Evaluation Results
121
+
122
+ <!--- Describe how your model was evaluated -->
123
+
124
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=msmarco-bert-base-base-dot-v5)
125
+
126
+
127
+ ## Training
128
+
129
+ See `train_script.py` in this repository for the used training script.
130
+
131
+
132
+
133
+ The model was trained with the parameters:
134
+
135
+ **DataLoader**:
136
+
137
+ `torch.utils.data.dataloader.DataLoader` of length 7858 with parameters:
138
+ ```
139
+ {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
140
+ ```
141
+
142
+ **Loss**:
143
+
144
+ `sentence_transformers.losses.MarginMSELoss.MarginMSELoss`
145
+
146
+ Parameters of the fit()-Method:
147
+ ```
148
+ {
149
+ "callback": null,
150
+ "epochs": 30,
151
+ "evaluation_steps": 0,
152
+ "evaluator": "NoneType",
153
+ "max_grad_norm": 1,
154
+ "optimizer_class": "<class 'transformers.optimization.AdamW'>",
155
+ "optimizer_params": {
156
+ "lr": 1e-05
157
+ },
158
+ "scheduler": "WarmupLinear",
159
+ "steps_per_epoch": null,
160
+ "warmup_steps": 10000,
161
+ "weight_decay": 0.01
162
+ }
163
+ ```
164
+
165
+
166
+ ## Full Model Architecture
167
+ ```
168
+ SentenceTransformer(
169
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: bert-base-uncased
170
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
171
+ )
172
+ ```
173
+
174
+ ## Citing & Authors
175
+
176
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
177
+
178
+ If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
179
+ ```bibtex
180
+ @inproceedings{reimers-2019-sentence-bert,
181
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
182
+ author = "Reimers, Nils and Gurevych, Iryna",
183
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
184
+ month = "11",
185
+ year = "2019",
186
+ publisher = "Association for Computational Linguistics",
187
+ url = "http://arxiv.org/abs/1908.10084",
188
+ }
189
+ ```
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/ec2-user/.cache/torch/sentence_transformers/sentence-transformers_msmarco-bert-base-dot-v5/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 4,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.25.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06c03a2ecfbd35a2e5253a8481b434340b8745df6ce0ee600652b381995614c3
3
+ size 211145033
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_basic_tokenize": true,
4
+ "do_lower_case": true,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 512,
7
+ "name_or_path": "/home/ec2-user/.cache/torch/sentence_transformers/sentence-transformers_msmarco-bert-base-dot-v5/",
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "special_tokens_map_file": "/bos/tmp0/luyug/outputs/condenser/models/l2-s6-km-L128-e8-lr1e-4-b256/special_tokens_map.json",
12
+ "strip_accents": null,
13
+ "tokenize_chinese_chars": true,
14
+ "tokenizer_class": "BertTokenizer",
15
+ "unk_token": "[UNK]"
16
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff