File size: 24,167 Bytes
8734368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
2023-10-18 14:34:24,829 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:24,829 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 14:34:24,829 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:24,830 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-18 14:34:24,830 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:24,830 Train:  1100 sentences
2023-10-18 14:34:24,830         (train_with_dev=False, train_with_test=False)
2023-10-18 14:34:24,830 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:24,830 Training Params:
2023-10-18 14:34:24,830  - learning_rate: "5e-05" 
2023-10-18 14:34:24,830  - mini_batch_size: "4"
2023-10-18 14:34:24,830  - max_epochs: "10"
2023-10-18 14:34:24,830  - shuffle: "True"
2023-10-18 14:34:24,830 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:24,830 Plugins:
2023-10-18 14:34:24,830  - TensorboardLogger
2023-10-18 14:34:24,830  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 14:34:24,830 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:24,830 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 14:34:24,830  - metric: "('micro avg', 'f1-score')"
2023-10-18 14:34:24,830 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:24,830 Computation:
2023-10-18 14:34:24,830  - compute on device: cuda:0
2023-10-18 14:34:24,830  - embedding storage: none
2023-10-18 14:34:24,830 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:24,830 Model training base path: "hmbench-ajmc/de-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-18 14:34:24,830 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:24,830 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:24,830 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 14:34:25,241 epoch 1 - iter 27/275 - loss 3.94457406 - time (sec): 0.41 - samples/sec: 5973.53 - lr: 0.000005 - momentum: 0.000000
2023-10-18 14:34:25,651 epoch 1 - iter 54/275 - loss 3.97957719 - time (sec): 0.82 - samples/sec: 5721.37 - lr: 0.000010 - momentum: 0.000000
2023-10-18 14:34:26,051 epoch 1 - iter 81/275 - loss 3.82844636 - time (sec): 1.22 - samples/sec: 5541.40 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:34:26,457 epoch 1 - iter 108/275 - loss 3.64553980 - time (sec): 1.63 - samples/sec: 5422.35 - lr: 0.000019 - momentum: 0.000000
2023-10-18 14:34:26,871 epoch 1 - iter 135/275 - loss 3.35546642 - time (sec): 2.04 - samples/sec: 5558.03 - lr: 0.000024 - momentum: 0.000000
2023-10-18 14:34:27,288 epoch 1 - iter 162/275 - loss 3.06649694 - time (sec): 2.46 - samples/sec: 5526.20 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:34:27,700 epoch 1 - iter 189/275 - loss 2.82331060 - time (sec): 2.87 - samples/sec: 5497.83 - lr: 0.000034 - momentum: 0.000000
2023-10-18 14:34:28,102 epoch 1 - iter 216/275 - loss 2.59254150 - time (sec): 3.27 - samples/sec: 5551.63 - lr: 0.000039 - momentum: 0.000000
2023-10-18 14:34:28,507 epoch 1 - iter 243/275 - loss 2.42230854 - time (sec): 3.68 - samples/sec: 5476.43 - lr: 0.000044 - momentum: 0.000000
2023-10-18 14:34:28,903 epoch 1 - iter 270/275 - loss 2.29568740 - time (sec): 4.07 - samples/sec: 5490.59 - lr: 0.000049 - momentum: 0.000000
2023-10-18 14:34:28,979 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:28,979 EPOCH 1 done: loss 2.2689 - lr: 0.000049
2023-10-18 14:34:29,218 DEV : loss 0.8229100704193115 - f1-score (micro avg)  0.0
2023-10-18 14:34:29,222 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:29,620 epoch 2 - iter 27/275 - loss 0.84797441 - time (sec): 0.40 - samples/sec: 6212.02 - lr: 0.000049 - momentum: 0.000000
2023-10-18 14:34:30,019 epoch 2 - iter 54/275 - loss 0.89177898 - time (sec): 0.80 - samples/sec: 5916.38 - lr: 0.000049 - momentum: 0.000000
2023-10-18 14:34:30,418 epoch 2 - iter 81/275 - loss 0.91951425 - time (sec): 1.20 - samples/sec: 5871.17 - lr: 0.000048 - momentum: 0.000000
2023-10-18 14:34:30,826 epoch 2 - iter 108/275 - loss 0.89409210 - time (sec): 1.60 - samples/sec: 5771.55 - lr: 0.000048 - momentum: 0.000000
2023-10-18 14:34:31,201 epoch 2 - iter 135/275 - loss 0.88598127 - time (sec): 1.98 - samples/sec: 5696.78 - lr: 0.000047 - momentum: 0.000000
2023-10-18 14:34:31,610 epoch 2 - iter 162/275 - loss 0.85285616 - time (sec): 2.39 - samples/sec: 5704.02 - lr: 0.000047 - momentum: 0.000000
2023-10-18 14:34:32,021 epoch 2 - iter 189/275 - loss 0.82927359 - time (sec): 2.80 - samples/sec: 5684.11 - lr: 0.000046 - momentum: 0.000000
2023-10-18 14:34:32,418 epoch 2 - iter 216/275 - loss 0.80856883 - time (sec): 3.20 - samples/sec: 5597.78 - lr: 0.000046 - momentum: 0.000000
2023-10-18 14:34:32,831 epoch 2 - iter 243/275 - loss 0.78287459 - time (sec): 3.61 - samples/sec: 5624.79 - lr: 0.000045 - momentum: 0.000000
2023-10-18 14:34:33,243 epoch 2 - iter 270/275 - loss 0.76347923 - time (sec): 4.02 - samples/sec: 5554.65 - lr: 0.000045 - momentum: 0.000000
2023-10-18 14:34:33,315 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:33,315 EPOCH 2 done: loss 0.7612 - lr: 0.000045
2023-10-18 14:34:33,669 DEV : loss 0.5238796472549438 - f1-score (micro avg)  0.1895
2023-10-18 14:34:33,673 saving best model
2023-10-18 14:34:33,704 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:34,111 epoch 3 - iter 27/275 - loss 0.63330269 - time (sec): 0.41 - samples/sec: 5574.87 - lr: 0.000044 - momentum: 0.000000
2023-10-18 14:34:34,519 epoch 3 - iter 54/275 - loss 0.57059336 - time (sec): 0.81 - samples/sec: 5551.88 - lr: 0.000043 - momentum: 0.000000
2023-10-18 14:34:34,925 epoch 3 - iter 81/275 - loss 0.59892710 - time (sec): 1.22 - samples/sec: 5646.07 - lr: 0.000043 - momentum: 0.000000
2023-10-18 14:34:35,480 epoch 3 - iter 108/275 - loss 0.57642150 - time (sec): 1.77 - samples/sec: 5218.10 - lr: 0.000042 - momentum: 0.000000
2023-10-18 14:34:35,882 epoch 3 - iter 135/275 - loss 0.57839286 - time (sec): 2.18 - samples/sec: 5263.09 - lr: 0.000042 - momentum: 0.000000
2023-10-18 14:34:36,322 epoch 3 - iter 162/275 - loss 0.56175351 - time (sec): 2.62 - samples/sec: 5233.27 - lr: 0.000041 - momentum: 0.000000
2023-10-18 14:34:36,746 epoch 3 - iter 189/275 - loss 0.55386261 - time (sec): 3.04 - samples/sec: 5233.22 - lr: 0.000041 - momentum: 0.000000
2023-10-18 14:34:37,157 epoch 3 - iter 216/275 - loss 0.55331858 - time (sec): 3.45 - samples/sec: 5239.51 - lr: 0.000040 - momentum: 0.000000
2023-10-18 14:34:37,574 epoch 3 - iter 243/275 - loss 0.55295982 - time (sec): 3.87 - samples/sec: 5236.73 - lr: 0.000040 - momentum: 0.000000
2023-10-18 14:34:37,979 epoch 3 - iter 270/275 - loss 0.55071202 - time (sec): 4.27 - samples/sec: 5252.53 - lr: 0.000039 - momentum: 0.000000
2023-10-18 14:34:38,055 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:38,055 EPOCH 3 done: loss 0.5485 - lr: 0.000039
2023-10-18 14:34:38,415 DEV : loss 0.382687509059906 - f1-score (micro avg)  0.4746
2023-10-18 14:34:38,419 saving best model
2023-10-18 14:34:38,454 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:38,866 epoch 4 - iter 27/275 - loss 0.52440291 - time (sec): 0.41 - samples/sec: 5364.19 - lr: 0.000038 - momentum: 0.000000
2023-10-18 14:34:39,254 epoch 4 - iter 54/275 - loss 0.49379413 - time (sec): 0.80 - samples/sec: 5455.30 - lr: 0.000038 - momentum: 0.000000
2023-10-18 14:34:39,668 epoch 4 - iter 81/275 - loss 0.46685441 - time (sec): 1.21 - samples/sec: 5269.79 - lr: 0.000037 - momentum: 0.000000
2023-10-18 14:34:40,086 epoch 4 - iter 108/275 - loss 0.48160009 - time (sec): 1.63 - samples/sec: 5271.61 - lr: 0.000037 - momentum: 0.000000
2023-10-18 14:34:40,522 epoch 4 - iter 135/275 - loss 0.46798370 - time (sec): 2.07 - samples/sec: 5408.94 - lr: 0.000036 - momentum: 0.000000
2023-10-18 14:34:40,947 epoch 4 - iter 162/275 - loss 0.45395448 - time (sec): 2.49 - samples/sec: 5374.43 - lr: 0.000036 - momentum: 0.000000
2023-10-18 14:34:41,367 epoch 4 - iter 189/275 - loss 0.45338045 - time (sec): 2.91 - samples/sec: 5377.17 - lr: 0.000035 - momentum: 0.000000
2023-10-18 14:34:41,776 epoch 4 - iter 216/275 - loss 0.44578276 - time (sec): 3.32 - samples/sec: 5410.32 - lr: 0.000035 - momentum: 0.000000
2023-10-18 14:34:42,192 epoch 4 - iter 243/275 - loss 0.44115371 - time (sec): 3.74 - samples/sec: 5409.32 - lr: 0.000034 - momentum: 0.000000
2023-10-18 14:34:42,606 epoch 4 - iter 270/275 - loss 0.43517083 - time (sec): 4.15 - samples/sec: 5379.63 - lr: 0.000034 - momentum: 0.000000
2023-10-18 14:34:42,692 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:42,692 EPOCH 4 done: loss 0.4346 - lr: 0.000034
2023-10-18 14:34:43,058 DEV : loss 0.33680784702301025 - f1-score (micro avg)  0.5485
2023-10-18 14:34:43,062 saving best model
2023-10-18 14:34:43,096 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:43,497 epoch 5 - iter 27/275 - loss 0.34448775 - time (sec): 0.40 - samples/sec: 6541.62 - lr: 0.000033 - momentum: 0.000000
2023-10-18 14:34:43,884 epoch 5 - iter 54/275 - loss 0.35793341 - time (sec): 0.79 - samples/sec: 5918.05 - lr: 0.000032 - momentum: 0.000000
2023-10-18 14:34:44,276 epoch 5 - iter 81/275 - loss 0.37488252 - time (sec): 1.18 - samples/sec: 5855.39 - lr: 0.000032 - momentum: 0.000000
2023-10-18 14:34:44,689 epoch 5 - iter 108/275 - loss 0.38765131 - time (sec): 1.59 - samples/sec: 5872.04 - lr: 0.000031 - momentum: 0.000000
2023-10-18 14:34:45,096 epoch 5 - iter 135/275 - loss 0.38999235 - time (sec): 2.00 - samples/sec: 5703.31 - lr: 0.000031 - momentum: 0.000000
2023-10-18 14:34:45,505 epoch 5 - iter 162/275 - loss 0.38841687 - time (sec): 2.41 - samples/sec: 5644.53 - lr: 0.000030 - momentum: 0.000000
2023-10-18 14:34:45,905 epoch 5 - iter 189/275 - loss 0.38974761 - time (sec): 2.81 - samples/sec: 5610.05 - lr: 0.000030 - momentum: 0.000000
2023-10-18 14:34:46,321 epoch 5 - iter 216/275 - loss 0.39216271 - time (sec): 3.23 - samples/sec: 5552.62 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:34:46,737 epoch 5 - iter 243/275 - loss 0.38836120 - time (sec): 3.64 - samples/sec: 5498.94 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:34:47,146 epoch 5 - iter 270/275 - loss 0.39178740 - time (sec): 4.05 - samples/sec: 5524.38 - lr: 0.000028 - momentum: 0.000000
2023-10-18 14:34:47,217 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:47,217 EPOCH 5 done: loss 0.3892 - lr: 0.000028
2023-10-18 14:34:47,587 DEV : loss 0.286026269197464 - f1-score (micro avg)  0.6083
2023-10-18 14:34:47,591 saving best model
2023-10-18 14:34:47,626 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:48,018 epoch 6 - iter 27/275 - loss 0.48487282 - time (sec): 0.39 - samples/sec: 5038.91 - lr: 0.000027 - momentum: 0.000000
2023-10-18 14:34:48,409 epoch 6 - iter 54/275 - loss 0.39612221 - time (sec): 0.78 - samples/sec: 5401.34 - lr: 0.000027 - momentum: 0.000000
2023-10-18 14:34:48,806 epoch 6 - iter 81/275 - loss 0.39666419 - time (sec): 1.18 - samples/sec: 5570.88 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:34:49,200 epoch 6 - iter 108/275 - loss 0.38652012 - time (sec): 1.57 - samples/sec: 5614.65 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:34:49,610 epoch 6 - iter 135/275 - loss 0.36749916 - time (sec): 1.98 - samples/sec: 5518.23 - lr: 0.000025 - momentum: 0.000000
2023-10-18 14:34:50,028 epoch 6 - iter 162/275 - loss 0.36658781 - time (sec): 2.40 - samples/sec: 5590.13 - lr: 0.000025 - momentum: 0.000000
2023-10-18 14:34:50,430 epoch 6 - iter 189/275 - loss 0.35919349 - time (sec): 2.80 - samples/sec: 5581.01 - lr: 0.000024 - momentum: 0.000000
2023-10-18 14:34:50,827 epoch 6 - iter 216/275 - loss 0.34957161 - time (sec): 3.20 - samples/sec: 5574.48 - lr: 0.000024 - momentum: 0.000000
2023-10-18 14:34:51,248 epoch 6 - iter 243/275 - loss 0.35441459 - time (sec): 3.62 - samples/sec: 5600.18 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:34:51,648 epoch 6 - iter 270/275 - loss 0.35201354 - time (sec): 4.02 - samples/sec: 5573.54 - lr: 0.000022 - momentum: 0.000000
2023-10-18 14:34:51,725 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:51,725 EPOCH 6 done: loss 0.3508 - lr: 0.000022
2023-10-18 14:34:52,106 DEV : loss 0.26645413041114807 - f1-score (micro avg)  0.6255
2023-10-18 14:34:52,111 saving best model
2023-10-18 14:34:52,145 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:52,555 epoch 7 - iter 27/275 - loss 0.37548681 - time (sec): 0.41 - samples/sec: 5082.83 - lr: 0.000022 - momentum: 0.000000
2023-10-18 14:34:52,958 epoch 7 - iter 54/275 - loss 0.34514987 - time (sec): 0.81 - samples/sec: 5253.35 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:34:53,358 epoch 7 - iter 81/275 - loss 0.35183308 - time (sec): 1.21 - samples/sec: 5228.42 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:34:53,767 epoch 7 - iter 108/275 - loss 0.34792121 - time (sec): 1.62 - samples/sec: 5148.08 - lr: 0.000020 - momentum: 0.000000
2023-10-18 14:34:54,188 epoch 7 - iter 135/275 - loss 0.34092810 - time (sec): 2.04 - samples/sec: 5228.21 - lr: 0.000020 - momentum: 0.000000
2023-10-18 14:34:54,594 epoch 7 - iter 162/275 - loss 0.33335193 - time (sec): 2.45 - samples/sec: 5352.35 - lr: 0.000019 - momentum: 0.000000
2023-10-18 14:34:55,011 epoch 7 - iter 189/275 - loss 0.33956542 - time (sec): 2.87 - samples/sec: 5392.50 - lr: 0.000019 - momentum: 0.000000
2023-10-18 14:34:55,420 epoch 7 - iter 216/275 - loss 0.33319421 - time (sec): 3.27 - samples/sec: 5427.20 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:34:55,832 epoch 7 - iter 243/275 - loss 0.32691358 - time (sec): 3.69 - samples/sec: 5474.15 - lr: 0.000017 - momentum: 0.000000
2023-10-18 14:34:56,241 epoch 7 - iter 270/275 - loss 0.32870171 - time (sec): 4.10 - samples/sec: 5479.50 - lr: 0.000017 - momentum: 0.000000
2023-10-18 14:34:56,313 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:56,313 EPOCH 7 done: loss 0.3272 - lr: 0.000017
2023-10-18 14:34:56,679 DEV : loss 0.2574481666088104 - f1-score (micro avg)  0.6277
2023-10-18 14:34:56,683 saving best model
2023-10-18 14:34:56,718 ----------------------------------------------------------------------------------------------------
2023-10-18 14:34:57,134 epoch 8 - iter 27/275 - loss 0.35232911 - time (sec): 0.42 - samples/sec: 5472.65 - lr: 0.000016 - momentum: 0.000000
2023-10-18 14:34:57,541 epoch 8 - iter 54/275 - loss 0.32320199 - time (sec): 0.82 - samples/sec: 5193.04 - lr: 0.000016 - momentum: 0.000000
2023-10-18 14:34:57,932 epoch 8 - iter 81/275 - loss 0.31388709 - time (sec): 1.21 - samples/sec: 5306.17 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:34:58,336 epoch 8 - iter 108/275 - loss 0.32588481 - time (sec): 1.62 - samples/sec: 5448.85 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:34:58,750 epoch 8 - iter 135/275 - loss 0.30666641 - time (sec): 2.03 - samples/sec: 5539.05 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:34:59,144 epoch 8 - iter 162/275 - loss 0.29869815 - time (sec): 2.43 - samples/sec: 5520.78 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:34:59,550 epoch 8 - iter 189/275 - loss 0.30212004 - time (sec): 2.83 - samples/sec: 5503.36 - lr: 0.000013 - momentum: 0.000000
2023-10-18 14:34:59,954 epoch 8 - iter 216/275 - loss 0.30866162 - time (sec): 3.24 - samples/sec: 5459.34 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:35:00,366 epoch 8 - iter 243/275 - loss 0.31213850 - time (sec): 3.65 - samples/sec: 5466.83 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:35:00,795 epoch 8 - iter 270/275 - loss 0.31265385 - time (sec): 4.08 - samples/sec: 5484.78 - lr: 0.000011 - momentum: 0.000000
2023-10-18 14:35:00,877 ----------------------------------------------------------------------------------------------------
2023-10-18 14:35:00,877 EPOCH 8 done: loss 0.3117 - lr: 0.000011
2023-10-18 14:35:01,258 DEV : loss 0.24906539916992188 - f1-score (micro avg)  0.6434
2023-10-18 14:35:01,263 saving best model
2023-10-18 14:35:01,299 ----------------------------------------------------------------------------------------------------
2023-10-18 14:35:01,725 epoch 9 - iter 27/275 - loss 0.28812589 - time (sec): 0.42 - samples/sec: 5407.92 - lr: 0.000011 - momentum: 0.000000
2023-10-18 14:35:02,140 epoch 9 - iter 54/275 - loss 0.30351124 - time (sec): 0.84 - samples/sec: 5479.49 - lr: 0.000010 - momentum: 0.000000
2023-10-18 14:35:02,566 epoch 9 - iter 81/275 - loss 0.30512938 - time (sec): 1.27 - samples/sec: 5373.65 - lr: 0.000010 - momentum: 0.000000
2023-10-18 14:35:02,965 epoch 9 - iter 108/275 - loss 0.32208951 - time (sec): 1.67 - samples/sec: 5342.06 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:35:03,367 epoch 9 - iter 135/275 - loss 0.32851618 - time (sec): 2.07 - samples/sec: 5341.07 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:35:03,774 epoch 9 - iter 162/275 - loss 0.32796046 - time (sec): 2.47 - samples/sec: 5362.39 - lr: 0.000008 - momentum: 0.000000
2023-10-18 14:35:04,187 epoch 9 - iter 189/275 - loss 0.31928635 - time (sec): 2.89 - samples/sec: 5363.87 - lr: 0.000007 - momentum: 0.000000
2023-10-18 14:35:04,598 epoch 9 - iter 216/275 - loss 0.31189310 - time (sec): 3.30 - samples/sec: 5409.81 - lr: 0.000007 - momentum: 0.000000
2023-10-18 14:35:05,011 epoch 9 - iter 243/275 - loss 0.31212107 - time (sec): 3.71 - samples/sec: 5502.41 - lr: 0.000006 - momentum: 0.000000
2023-10-18 14:35:05,409 epoch 9 - iter 270/275 - loss 0.30980213 - time (sec): 4.11 - samples/sec: 5439.67 - lr: 0.000006 - momentum: 0.000000
2023-10-18 14:35:05,483 ----------------------------------------------------------------------------------------------------
2023-10-18 14:35:05,483 EPOCH 9 done: loss 0.3114 - lr: 0.000006
2023-10-18 14:35:05,873 DEV : loss 0.24717433750629425 - f1-score (micro avg)  0.6471
2023-10-18 14:35:05,878 saving best model
2023-10-18 14:35:05,918 ----------------------------------------------------------------------------------------------------
2023-10-18 14:35:06,353 epoch 10 - iter 27/275 - loss 0.25692152 - time (sec): 0.43 - samples/sec: 5151.95 - lr: 0.000005 - momentum: 0.000000
2023-10-18 14:35:06,767 epoch 10 - iter 54/275 - loss 0.28814194 - time (sec): 0.85 - samples/sec: 5358.13 - lr: 0.000005 - momentum: 0.000000
2023-10-18 14:35:07,169 epoch 10 - iter 81/275 - loss 0.29696314 - time (sec): 1.25 - samples/sec: 5240.54 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:35:07,563 epoch 10 - iter 108/275 - loss 0.29047393 - time (sec): 1.64 - samples/sec: 5305.80 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:35:07,974 epoch 10 - iter 135/275 - loss 0.30111439 - time (sec): 2.06 - samples/sec: 5365.85 - lr: 0.000003 - momentum: 0.000000
2023-10-18 14:35:08,388 epoch 10 - iter 162/275 - loss 0.30748718 - time (sec): 2.47 - samples/sec: 5416.22 - lr: 0.000002 - momentum: 0.000000
2023-10-18 14:35:08,811 epoch 10 - iter 189/275 - loss 0.31512691 - time (sec): 2.89 - samples/sec: 5459.24 - lr: 0.000002 - momentum: 0.000000
2023-10-18 14:35:09,217 epoch 10 - iter 216/275 - loss 0.30589871 - time (sec): 3.30 - samples/sec: 5491.21 - lr: 0.000001 - momentum: 0.000000
2023-10-18 14:35:09,630 epoch 10 - iter 243/275 - loss 0.30215041 - time (sec): 3.71 - samples/sec: 5434.46 - lr: 0.000001 - momentum: 0.000000
2023-10-18 14:35:10,047 epoch 10 - iter 270/275 - loss 0.29793489 - time (sec): 4.13 - samples/sec: 5420.59 - lr: 0.000000 - momentum: 0.000000
2023-10-18 14:35:10,122 ----------------------------------------------------------------------------------------------------
2023-10-18 14:35:10,122 EPOCH 10 done: loss 0.2969 - lr: 0.000000
2023-10-18 14:35:10,495 DEV : loss 0.2449171245098114 - f1-score (micro avg)  0.644
2023-10-18 14:35:10,529 ----------------------------------------------------------------------------------------------------
2023-10-18 14:35:10,529 Loading model from best epoch ...
2023-10-18 14:35:10,603 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-18 14:35:10,884 
Results:
- F-score (micro) 0.6606
- F-score (macro) 0.3933
- Accuracy 0.501

By class:
              precision    recall  f1-score   support

       scope     0.6216    0.6534    0.6371       176
        pers     0.8962    0.7422    0.8120       128
        work     0.4583    0.5946    0.5176        74
      object     0.0000    0.0000    0.0000         2
         loc     0.0000    0.0000    0.0000         2

   micro avg     0.6563    0.6649    0.6606       382
   macro avg     0.3952    0.3980    0.3933       382
weighted avg     0.6755    0.6649    0.6659       382

2023-10-18 14:35:10,884 ----------------------------------------------------------------------------------------------------