Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +239 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc1189c2fa966bfe1c0920ce749e615d0cba4e2900ccab695efdc3ca5e79c2d
|
3 |
+
size 443311111
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 23:40:30 0.0000 0.3524 0.1243 0.7211 0.6991 0.7099 0.5696
|
3 |
+
2 23:42:05 0.0000 0.1110 0.0963 0.6993 0.7602 0.7285 0.5905
|
4 |
+
3 23:43:40 0.0000 0.0797 0.1172 0.7284 0.7828 0.7546 0.6234
|
5 |
+
4 23:45:15 0.0000 0.0592 0.1438 0.7555 0.8111 0.7823 0.6572
|
6 |
+
5 23:46:51 0.0000 0.0446 0.1670 0.7457 0.7896 0.7670 0.6421
|
7 |
+
6 23:48:25 0.0000 0.0354 0.1907 0.7550 0.7670 0.7609 0.6331
|
8 |
+
7 23:49:59 0.0000 0.0235 0.1984 0.7671 0.7975 0.7820 0.6595
|
9 |
+
8 23:51:33 0.0000 0.0175 0.2155 0.7417 0.7862 0.7633 0.6382
|
10 |
+
9 23:53:07 0.0000 0.0105 0.2331 0.7404 0.7873 0.7632 0.6379
|
11 |
+
10 23:54:41 0.0000 0.0069 0.2377 0.7511 0.7919 0.7709 0.6470
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-13 23:38:56,260 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-13 23:38:56,261 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-13 23:38:56,261 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-13 23:38:56,261 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
52 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
|
53 |
+
2023-10-13 23:38:56,261 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-13 23:38:56,261 Train: 7936 sentences
|
55 |
+
2023-10-13 23:38:56,261 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-13 23:38:56,261 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-13 23:38:56,261 Training Params:
|
58 |
+
2023-10-13 23:38:56,261 - learning_rate: "3e-05"
|
59 |
+
2023-10-13 23:38:56,261 - mini_batch_size: "4"
|
60 |
+
2023-10-13 23:38:56,261 - max_epochs: "10"
|
61 |
+
2023-10-13 23:38:56,261 - shuffle: "True"
|
62 |
+
2023-10-13 23:38:56,261 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-13 23:38:56,261 Plugins:
|
64 |
+
2023-10-13 23:38:56,261 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-13 23:38:56,261 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-13 23:38:56,261 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-13 23:38:56,261 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-13 23:38:56,262 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-13 23:38:56,262 Computation:
|
70 |
+
2023-10-13 23:38:56,262 - compute on device: cuda:0
|
71 |
+
2023-10-13 23:38:56,262 - embedding storage: none
|
72 |
+
2023-10-13 23:38:56,262 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-13 23:38:56,262 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
|
74 |
+
2023-10-13 23:38:56,262 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-13 23:38:56,262 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-13 23:39:05,623 epoch 1 - iter 198/1984 - loss 1.83762815 - time (sec): 9.36 - samples/sec: 1740.22 - lr: 0.000003 - momentum: 0.000000
|
77 |
+
2023-10-13 23:39:14,861 epoch 1 - iter 396/1984 - loss 1.09662191 - time (sec): 18.60 - samples/sec: 1741.17 - lr: 0.000006 - momentum: 0.000000
|
78 |
+
2023-10-13 23:39:23,842 epoch 1 - iter 594/1984 - loss 0.81504132 - time (sec): 27.58 - samples/sec: 1746.82 - lr: 0.000009 - momentum: 0.000000
|
79 |
+
2023-10-13 23:39:32,828 epoch 1 - iter 792/1984 - loss 0.66249214 - time (sec): 36.57 - samples/sec: 1765.29 - lr: 0.000012 - momentum: 0.000000
|
80 |
+
2023-10-13 23:39:41,985 epoch 1 - iter 990/1984 - loss 0.56311956 - time (sec): 45.72 - samples/sec: 1779.23 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-13 23:39:51,226 epoch 1 - iter 1188/1984 - loss 0.48540145 - time (sec): 54.96 - samples/sec: 1808.89 - lr: 0.000018 - momentum: 0.000000
|
82 |
+
2023-10-13 23:40:00,329 epoch 1 - iter 1386/1984 - loss 0.44028878 - time (sec): 64.07 - samples/sec: 1802.31 - lr: 0.000021 - momentum: 0.000000
|
83 |
+
2023-10-13 23:40:09,323 epoch 1 - iter 1584/1984 - loss 0.40258648 - time (sec): 73.06 - samples/sec: 1804.47 - lr: 0.000024 - momentum: 0.000000
|
84 |
+
2023-10-13 23:40:18,196 epoch 1 - iter 1782/1984 - loss 0.37540297 - time (sec): 81.93 - samples/sec: 1799.90 - lr: 0.000027 - momentum: 0.000000
|
85 |
+
2023-10-13 23:40:27,100 epoch 1 - iter 1980/1984 - loss 0.35246436 - time (sec): 90.84 - samples/sec: 1801.35 - lr: 0.000030 - momentum: 0.000000
|
86 |
+
2023-10-13 23:40:27,278 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-13 23:40:27,278 EPOCH 1 done: loss 0.3524 - lr: 0.000030
|
88 |
+
2023-10-13 23:40:30,422 DEV : loss 0.12433891743421555 - f1-score (micro avg) 0.7099
|
89 |
+
2023-10-13 23:40:30,444 saving best model
|
90 |
+
2023-10-13 23:40:30,861 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-13 23:40:39,812 epoch 2 - iter 198/1984 - loss 0.11828575 - time (sec): 8.95 - samples/sec: 1789.32 - lr: 0.000030 - momentum: 0.000000
|
92 |
+
2023-10-13 23:40:48,784 epoch 2 - iter 396/1984 - loss 0.11140177 - time (sec): 17.92 - samples/sec: 1815.27 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-13 23:40:58,222 epoch 2 - iter 594/1984 - loss 0.11940888 - time (sec): 27.36 - samples/sec: 1789.15 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2023-10-13 23:41:07,249 epoch 2 - iter 792/1984 - loss 0.11906737 - time (sec): 36.39 - samples/sec: 1799.64 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-13 23:41:16,257 epoch 2 - iter 990/1984 - loss 0.11891276 - time (sec): 45.39 - samples/sec: 1804.73 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-13 23:41:25,219 epoch 2 - iter 1188/1984 - loss 0.11640076 - time (sec): 54.36 - samples/sec: 1812.33 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2023-10-13 23:41:34,108 epoch 2 - iter 1386/1984 - loss 0.11635323 - time (sec): 63.25 - samples/sec: 1815.08 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-13 23:41:43,049 epoch 2 - iter 1584/1984 - loss 0.11619891 - time (sec): 72.19 - samples/sec: 1814.34 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-13 23:41:52,022 epoch 2 - iter 1782/1984 - loss 0.11338861 - time (sec): 81.16 - samples/sec: 1818.54 - lr: 0.000027 - momentum: 0.000000
|
100 |
+
2023-10-13 23:42:01,193 epoch 2 - iter 1980/1984 - loss 0.11087439 - time (sec): 90.33 - samples/sec: 1812.59 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-13 23:42:01,372 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-13 23:42:01,372 EPOCH 2 done: loss 0.1110 - lr: 0.000027
|
103 |
+
2023-10-13 23:42:05,217 DEV : loss 0.09629001468420029 - f1-score (micro avg) 0.7285
|
104 |
+
2023-10-13 23:42:05,237 saving best model
|
105 |
+
2023-10-13 23:42:05,739 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-13 23:42:15,161 epoch 3 - iter 198/1984 - loss 0.07429461 - time (sec): 9.42 - samples/sec: 1699.53 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-13 23:42:24,281 epoch 3 - iter 396/1984 - loss 0.08110074 - time (sec): 18.54 - samples/sec: 1720.44 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2023-10-13 23:42:33,319 epoch 3 - iter 594/1984 - loss 0.08477110 - time (sec): 27.58 - samples/sec: 1770.13 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-13 23:42:42,426 epoch 3 - iter 792/1984 - loss 0.08227969 - time (sec): 36.68 - samples/sec: 1798.59 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-13 23:42:51,384 epoch 3 - iter 990/1984 - loss 0.08206052 - time (sec): 45.64 - samples/sec: 1800.84 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2023-10-13 23:43:00,378 epoch 3 - iter 1188/1984 - loss 0.08348155 - time (sec): 54.63 - samples/sec: 1794.26 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-13 23:43:09,338 epoch 3 - iter 1386/1984 - loss 0.08114266 - time (sec): 63.60 - samples/sec: 1796.94 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-13 23:43:18,462 epoch 3 - iter 1584/1984 - loss 0.07984718 - time (sec): 72.72 - samples/sec: 1803.30 - lr: 0.000024 - momentum: 0.000000
|
114 |
+
2023-10-13 23:43:27,624 epoch 3 - iter 1782/1984 - loss 0.07934502 - time (sec): 81.88 - samples/sec: 1801.00 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-13 23:43:36,624 epoch 3 - iter 1980/1984 - loss 0.07959415 - time (sec): 90.88 - samples/sec: 1802.37 - lr: 0.000023 - momentum: 0.000000
|
116 |
+
2023-10-13 23:43:36,802 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-13 23:43:36,802 EPOCH 3 done: loss 0.0797 - lr: 0.000023
|
118 |
+
2023-10-13 23:43:40,249 DEV : loss 0.11717832088470459 - f1-score (micro avg) 0.7546
|
119 |
+
2023-10-13 23:43:40,270 saving best model
|
120 |
+
2023-10-13 23:43:40,823 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-13 23:43:50,001 epoch 4 - iter 198/1984 - loss 0.06052117 - time (sec): 9.18 - samples/sec: 1734.76 - lr: 0.000023 - momentum: 0.000000
|
122 |
+
2023-10-13 23:43:59,043 epoch 4 - iter 396/1984 - loss 0.06140378 - time (sec): 18.22 - samples/sec: 1796.43 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2023-10-13 23:44:08,039 epoch 4 - iter 594/1984 - loss 0.06052478 - time (sec): 27.21 - samples/sec: 1754.30 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-10-13 23:44:17,139 epoch 4 - iter 792/1984 - loss 0.06090929 - time (sec): 36.31 - samples/sec: 1772.51 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-10-13 23:44:26,199 epoch 4 - iter 990/1984 - loss 0.05940225 - time (sec): 45.37 - samples/sec: 1784.17 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-13 23:44:35,410 epoch 4 - iter 1188/1984 - loss 0.06144572 - time (sec): 54.59 - samples/sec: 1792.61 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-10-13 23:44:44,471 epoch 4 - iter 1386/1984 - loss 0.06104930 - time (sec): 63.65 - samples/sec: 1790.11 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-10-13 23:44:53,448 epoch 4 - iter 1584/1984 - loss 0.06021919 - time (sec): 72.62 - samples/sec: 1787.03 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-13 23:45:02,466 epoch 4 - iter 1782/1984 - loss 0.06016900 - time (sec): 81.64 - samples/sec: 1792.86 - lr: 0.000020 - momentum: 0.000000
|
130 |
+
2023-10-13 23:45:11,679 epoch 4 - iter 1980/1984 - loss 0.05925545 - time (sec): 90.85 - samples/sec: 1801.73 - lr: 0.000020 - momentum: 0.000000
|
131 |
+
2023-10-13 23:45:11,872 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-13 23:45:11,872 EPOCH 4 done: loss 0.0592 - lr: 0.000020
|
133 |
+
2023-10-13 23:45:15,405 DEV : loss 0.14380605518817902 - f1-score (micro avg) 0.7823
|
134 |
+
2023-10-13 23:45:15,440 saving best model
|
135 |
+
2023-10-13 23:45:15,946 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-10-13 23:45:25,143 epoch 5 - iter 198/1984 - loss 0.04087458 - time (sec): 9.19 - samples/sec: 1756.29 - lr: 0.000020 - momentum: 0.000000
|
137 |
+
2023-10-13 23:45:34,337 epoch 5 - iter 396/1984 - loss 0.04482892 - time (sec): 18.39 - samples/sec: 1786.25 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-10-13 23:45:43,527 epoch 5 - iter 594/1984 - loss 0.04311401 - time (sec): 27.58 - samples/sec: 1811.77 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-10-13 23:45:52,597 epoch 5 - iter 792/1984 - loss 0.04281423 - time (sec): 36.65 - samples/sec: 1791.80 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-13 23:46:01,560 epoch 5 - iter 990/1984 - loss 0.04332734 - time (sec): 45.61 - samples/sec: 1786.28 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-10-13 23:46:10,615 epoch 5 - iter 1188/1984 - loss 0.04358208 - time (sec): 54.66 - samples/sec: 1794.86 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-10-13 23:46:19,677 epoch 5 - iter 1386/1984 - loss 0.04379144 - time (sec): 63.73 - samples/sec: 1803.16 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-13 23:46:28,892 epoch 5 - iter 1584/1984 - loss 0.04545313 - time (sec): 72.94 - samples/sec: 1811.13 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-10-13 23:46:37,793 epoch 5 - iter 1782/1984 - loss 0.04375927 - time (sec): 81.84 - samples/sec: 1807.89 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-10-13 23:46:46,890 epoch 5 - iter 1980/1984 - loss 0.04461810 - time (sec): 90.94 - samples/sec: 1798.77 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-13 23:46:47,084 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-10-13 23:46:47,084 EPOCH 5 done: loss 0.0446 - lr: 0.000017
|
148 |
+
2023-10-13 23:46:51,086 DEV : loss 0.16696855425834656 - f1-score (micro avg) 0.767
|
149 |
+
2023-10-13 23:46:51,110 ----------------------------------------------------------------------------------------------------
|
150 |
+
2023-10-13 23:47:00,477 epoch 6 - iter 198/1984 - loss 0.03505539 - time (sec): 9.37 - samples/sec: 1863.68 - lr: 0.000016 - momentum: 0.000000
|
151 |
+
2023-10-13 23:47:09,450 epoch 6 - iter 396/1984 - loss 0.03251886 - time (sec): 18.34 - samples/sec: 1813.90 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-10-13 23:47:18,382 epoch 6 - iter 594/1984 - loss 0.03280510 - time (sec): 27.27 - samples/sec: 1791.04 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2023-10-13 23:47:27,447 epoch 6 - iter 792/1984 - loss 0.03472134 - time (sec): 36.34 - samples/sec: 1798.71 - lr: 0.000015 - momentum: 0.000000
|
154 |
+
2023-10-13 23:47:36,364 epoch 6 - iter 990/1984 - loss 0.03368279 - time (sec): 45.25 - samples/sec: 1793.01 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-10-13 23:47:45,255 epoch 6 - iter 1188/1984 - loss 0.03396626 - time (sec): 54.14 - samples/sec: 1792.49 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2023-10-13 23:47:54,494 epoch 6 - iter 1386/1984 - loss 0.03365918 - time (sec): 63.38 - samples/sec: 1800.85 - lr: 0.000014 - momentum: 0.000000
|
157 |
+
2023-10-13 23:48:03,472 epoch 6 - iter 1584/1984 - loss 0.03440385 - time (sec): 72.36 - samples/sec: 1803.11 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-10-13 23:48:12,439 epoch 6 - iter 1782/1984 - loss 0.03479304 - time (sec): 81.33 - samples/sec: 1808.13 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2023-10-13 23:48:21,422 epoch 6 - iter 1980/1984 - loss 0.03544213 - time (sec): 90.31 - samples/sec: 1813.02 - lr: 0.000013 - momentum: 0.000000
|
160 |
+
2023-10-13 23:48:21,597 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-10-13 23:48:21,598 EPOCH 6 done: loss 0.0354 - lr: 0.000013
|
162 |
+
2023-10-13 23:48:24,988 DEV : loss 0.1906966120004654 - f1-score (micro avg) 0.7609
|
163 |
+
2023-10-13 23:48:25,009 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-13 23:48:34,032 epoch 7 - iter 198/1984 - loss 0.02239552 - time (sec): 9.02 - samples/sec: 1854.40 - lr: 0.000013 - momentum: 0.000000
|
165 |
+
2023-10-13 23:48:42,982 epoch 7 - iter 396/1984 - loss 0.01908052 - time (sec): 17.97 - samples/sec: 1843.91 - lr: 0.000013 - momentum: 0.000000
|
166 |
+
2023-10-13 23:48:52,026 epoch 7 - iter 594/1984 - loss 0.01846812 - time (sec): 27.02 - samples/sec: 1843.30 - lr: 0.000012 - momentum: 0.000000
|
167 |
+
2023-10-13 23:49:01,113 epoch 7 - iter 792/1984 - loss 0.02010717 - time (sec): 36.10 - samples/sec: 1803.01 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-10-13 23:49:10,095 epoch 7 - iter 990/1984 - loss 0.02248072 - time (sec): 45.08 - samples/sec: 1819.55 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-10-13 23:49:18,978 epoch 7 - iter 1188/1984 - loss 0.02304749 - time (sec): 53.97 - samples/sec: 1817.48 - lr: 0.000011 - momentum: 0.000000
|
170 |
+
2023-10-13 23:49:27,935 epoch 7 - iter 1386/1984 - loss 0.02228094 - time (sec): 62.93 - samples/sec: 1812.85 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-10-13 23:49:36,927 epoch 7 - iter 1584/1984 - loss 0.02350682 - time (sec): 71.92 - samples/sec: 1811.32 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-10-13 23:49:46,117 epoch 7 - iter 1782/1984 - loss 0.02341870 - time (sec): 81.11 - samples/sec: 1810.88 - lr: 0.000010 - momentum: 0.000000
|
173 |
+
2023-10-13 23:49:55,199 epoch 7 - iter 1980/1984 - loss 0.02353248 - time (sec): 90.19 - samples/sec: 1815.61 - lr: 0.000010 - momentum: 0.000000
|
174 |
+
2023-10-13 23:49:55,377 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-10-13 23:49:55,377 EPOCH 7 done: loss 0.0235 - lr: 0.000010
|
176 |
+
2023-10-13 23:49:59,310 DEV : loss 0.19835640490055084 - f1-score (micro avg) 0.782
|
177 |
+
2023-10-13 23:49:59,331 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-13 23:50:08,784 epoch 8 - iter 198/1984 - loss 0.02230710 - time (sec): 9.45 - samples/sec: 1803.36 - lr: 0.000010 - momentum: 0.000000
|
179 |
+
2023-10-13 23:50:17,765 epoch 8 - iter 396/1984 - loss 0.01940484 - time (sec): 18.43 - samples/sec: 1809.43 - lr: 0.000009 - momentum: 0.000000
|
180 |
+
2023-10-13 23:50:26,817 epoch 8 - iter 594/1984 - loss 0.01764565 - time (sec): 27.48 - samples/sec: 1836.45 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-10-13 23:50:35,737 epoch 8 - iter 792/1984 - loss 0.01686537 - time (sec): 36.40 - samples/sec: 1833.82 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-10-13 23:50:44,795 epoch 8 - iter 990/1984 - loss 0.01829213 - time (sec): 45.46 - samples/sec: 1805.63 - lr: 0.000008 - momentum: 0.000000
|
183 |
+
2023-10-13 23:50:53,724 epoch 8 - iter 1188/1984 - loss 0.01820113 - time (sec): 54.39 - samples/sec: 1809.96 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-10-13 23:51:02,869 epoch 8 - iter 1386/1984 - loss 0.01748894 - time (sec): 63.54 - samples/sec: 1807.49 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-10-13 23:51:12,333 epoch 8 - iter 1584/1984 - loss 0.01719619 - time (sec): 73.00 - samples/sec: 1800.67 - lr: 0.000007 - momentum: 0.000000
|
186 |
+
2023-10-13 23:51:21,277 epoch 8 - iter 1782/1984 - loss 0.01734332 - time (sec): 81.94 - samples/sec: 1807.45 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-10-13 23:51:30,188 epoch 8 - iter 1980/1984 - loss 0.01756418 - time (sec): 90.86 - samples/sec: 1801.14 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-10-13 23:51:30,370 ----------------------------------------------------------------------------------------------------
|
189 |
+
2023-10-13 23:51:30,370 EPOCH 8 done: loss 0.0175 - lr: 0.000007
|
190 |
+
2023-10-13 23:51:33,748 DEV : loss 0.215502068400383 - f1-score (micro avg) 0.7633
|
191 |
+
2023-10-13 23:51:33,769 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-13 23:51:42,760 epoch 9 - iter 198/1984 - loss 0.01149768 - time (sec): 8.99 - samples/sec: 1769.82 - lr: 0.000006 - momentum: 0.000000
|
193 |
+
2023-10-13 23:51:51,819 epoch 9 - iter 396/1984 - loss 0.01515882 - time (sec): 18.05 - samples/sec: 1787.98 - lr: 0.000006 - momentum: 0.000000
|
194 |
+
2023-10-13 23:52:00,844 epoch 9 - iter 594/1984 - loss 0.01337974 - time (sec): 27.07 - samples/sec: 1824.64 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-10-13 23:52:09,839 epoch 9 - iter 792/1984 - loss 0.01205560 - time (sec): 36.07 - samples/sec: 1828.37 - lr: 0.000005 - momentum: 0.000000
|
196 |
+
2023-10-13 23:52:18,833 epoch 9 - iter 990/1984 - loss 0.01052937 - time (sec): 45.06 - samples/sec: 1821.80 - lr: 0.000005 - momentum: 0.000000
|
197 |
+
2023-10-13 23:52:27,846 epoch 9 - iter 1188/1984 - loss 0.01105230 - time (sec): 54.08 - samples/sec: 1822.13 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-10-13 23:52:36,854 epoch 9 - iter 1386/1984 - loss 0.01084377 - time (sec): 63.08 - samples/sec: 1815.25 - lr: 0.000004 - momentum: 0.000000
|
199 |
+
2023-10-13 23:52:45,813 epoch 9 - iter 1584/1984 - loss 0.01116629 - time (sec): 72.04 - samples/sec: 1817.09 - lr: 0.000004 - momentum: 0.000000
|
200 |
+
2023-10-13 23:52:54,838 epoch 9 - iter 1782/1984 - loss 0.01094512 - time (sec): 81.07 - samples/sec: 1812.73 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-10-13 23:53:03,779 epoch 9 - iter 1980/1984 - loss 0.01048321 - time (sec): 90.01 - samples/sec: 1818.01 - lr: 0.000003 - momentum: 0.000000
|
202 |
+
2023-10-13 23:53:03,957 ----------------------------------------------------------------------------------------------------
|
203 |
+
2023-10-13 23:53:03,957 EPOCH 9 done: loss 0.0105 - lr: 0.000003
|
204 |
+
2023-10-13 23:53:07,359 DEV : loss 0.2330678254365921 - f1-score (micro avg) 0.7632
|
205 |
+
2023-10-13 23:53:07,381 ----------------------------------------------------------------------------------------------------
|
206 |
+
2023-10-13 23:53:16,538 epoch 10 - iter 198/1984 - loss 0.00727112 - time (sec): 9.16 - samples/sec: 1873.57 - lr: 0.000003 - momentum: 0.000000
|
207 |
+
2023-10-13 23:53:25,529 epoch 10 - iter 396/1984 - loss 0.00644925 - time (sec): 18.15 - samples/sec: 1829.60 - lr: 0.000003 - momentum: 0.000000
|
208 |
+
2023-10-13 23:53:34,573 epoch 10 - iter 594/1984 - loss 0.00644003 - time (sec): 27.19 - samples/sec: 1831.35 - lr: 0.000002 - momentum: 0.000000
|
209 |
+
2023-10-13 23:53:44,140 epoch 10 - iter 792/1984 - loss 0.00614650 - time (sec): 36.76 - samples/sec: 1815.49 - lr: 0.000002 - momentum: 0.000000
|
210 |
+
2023-10-13 23:53:53,201 epoch 10 - iter 990/1984 - loss 0.00665805 - time (sec): 45.82 - samples/sec: 1833.66 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-13 23:54:02,072 epoch 10 - iter 1188/1984 - loss 0.00708536 - time (sec): 54.69 - samples/sec: 1829.89 - lr: 0.000001 - momentum: 0.000000
|
212 |
+
2023-10-13 23:54:10,915 epoch 10 - iter 1386/1984 - loss 0.00771984 - time (sec): 63.53 - samples/sec: 1817.53 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-13 23:54:19,803 epoch 10 - iter 1584/1984 - loss 0.00781777 - time (sec): 72.42 - samples/sec: 1807.47 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-13 23:54:28,689 epoch 10 - iter 1782/1984 - loss 0.00737069 - time (sec): 81.31 - samples/sec: 1806.15 - lr: 0.000000 - momentum: 0.000000
|
215 |
+
2023-10-13 23:54:38,294 epoch 10 - iter 1980/1984 - loss 0.00694992 - time (sec): 90.91 - samples/sec: 1800.46 - lr: 0.000000 - momentum: 0.000000
|
216 |
+
2023-10-13 23:54:38,470 ----------------------------------------------------------------------------------------------------
|
217 |
+
2023-10-13 23:54:38,470 EPOCH 10 done: loss 0.0069 - lr: 0.000000
|
218 |
+
2023-10-13 23:54:41,942 DEV : loss 0.23772144317626953 - f1-score (micro avg) 0.7709
|
219 |
+
2023-10-13 23:54:42,395 ----------------------------------------------------------------------------------------------------
|
220 |
+
2023-10-13 23:54:42,396 Loading model from best epoch ...
|
221 |
+
2023-10-13 23:54:43,833 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
222 |
+
2023-10-13 23:54:47,114
|
223 |
+
Results:
|
224 |
+
- F-score (micro) 0.7789
|
225 |
+
- F-score (macro) 0.6828
|
226 |
+
- Accuracy 0.6588
|
227 |
+
|
228 |
+
By class:
|
229 |
+
precision recall f1-score support
|
230 |
+
|
231 |
+
LOC 0.8215 0.8641 0.8423 655
|
232 |
+
PER 0.6963 0.8430 0.7627 223
|
233 |
+
ORG 0.4951 0.4016 0.4435 127
|
234 |
+
|
235 |
+
micro avg 0.7580 0.8010 0.7789 1005
|
236 |
+
macro avg 0.6710 0.7029 0.6828 1005
|
237 |
+
weighted avg 0.7525 0.8010 0.7742 1005
|
238 |
+
|
239 |
+
2023-10-13 23:54:47,115 ----------------------------------------------------------------------------------------------------
|