--- license: mit language: - en --- # hmByT5 - Preliminary Language Models Preliminary Historic Multilingual and Monolingual ByT5 Models. Following languages are currently covered: * English (British Library Corpus - Books) More details can be found in [our GitHub repository](https://github.com/stefan-it/hmByT5). # Pretraining We use the official JAX/FLAX example in Hugging Face Transformers to pretrain a ByT5 model on a single v3-8 TPU. Details about the training can be found [here](https://github.com/stefan-it/hmByT5/tree/main/hmbyt5-flax). This model was trained with `mean_noise_span_length=20`. # Evaluation on Downstream Tasks (NER) We evaluated the hmByT5 Base model on English AjMC dataset: | Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. | |------------------------------------------|-------|-------|-------|-------|-------|--------------| | `wsFalse-bs8-e10-lr0.00015-poolingfirst` | 86.51 | 87.2 | 86.22 | 85.78 | 86.46 | 86.43 ± 0.46 | | `wsFalse-bs4-e10-lr0.00016-poolingfirst` | 86.12 | 87.04 | 87.01 | 85.25 | 86.74 | 86.43 ± 0.68 | | `wsFalse-bs8-e10-lr0.00016-poolingfirst` | 86.49 | 85.27 | 86.12 | 86.29 | 85.61 | 85.96 ± 0.45 | | `wsFalse-bs4-e10-lr0.00015-poolingfirst` | 86.33 | 86.05 | 84.48 | 85.68 | 86.16 | 85.74 ± 0.67 | The ByT5 Small [model](https://huggingface.co/hmbyt5/byt5-small-english) achieves 85.65 ± 1.21 on this dataset. # Acknowledgements Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️