--- library_name: peft license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-lora-text-classification results: [] --- # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0266 - Accuracy: {'accuracy': 0.879} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 250 | 0.5728 | {'accuracy': 0.836} | | 0.4465 | 2.0 | 500 | 0.5879 | {'accuracy': 0.84} | | 0.4465 | 3.0 | 750 | 0.5660 | {'accuracy': 0.87} | | 0.2143 | 4.0 | 1000 | 0.7156 | {'accuracy': 0.884} | | 0.2143 | 5.0 | 1250 | 0.8289 | {'accuracy': 0.878} | | 0.0678 | 6.0 | 1500 | 0.8860 | {'accuracy': 0.881} | | 0.0678 | 7.0 | 1750 | 0.8860 | {'accuracy': 0.89} | | 0.0197 | 8.0 | 2000 | 0.9478 | {'accuracy': 0.878} | | 0.0197 | 9.0 | 2250 | 1.0301 | {'accuracy': 0.878} | | 0.0096 | 10.0 | 2500 | 1.0266 | {'accuracy': 0.879} | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3