diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..007646558e40af815fffa34d3d1d7a692d24f140 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,24 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +specialized_llm_1b_base_100/checkpoint-100/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_1b_base_100/checkpoint-50/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_1b_base_10000/checkpoint-313/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_1b_base_10000/checkpoint-626/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_1b_base_2000/checkpoint-125/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_1b_base_2000/checkpoint-250/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_1b_base_500/checkpoint-125/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_1b_base_500/checkpoint-250/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_1b_base_5000/checkpoint-157/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_1b_base_5000/checkpoint-314/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_3b_base_100/checkpoint-100/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_3b_base_100/checkpoint-50/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_3b_base_10000/checkpoint-313/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_3b_base_10000/checkpoint-626/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_3b_base_2000/checkpoint-125/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_3b_base_2000/checkpoint-250/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_3b_base_500/checkpoint-125/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_3b_base_500/checkpoint-250/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_3b_base_500/checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_3b_base_5000/checkpoint-157/tokenizer.json filter=lfs diff=lfs merge=lfs -text +specialized_llm_3b_base_5000/checkpoint-314/tokenizer.json filter=lfs diff=lfs merge=lfs -text diff --git a/specialized_llm_1b_base_100/checkpoint-100/config.json b/specialized_llm_1b_base_100/checkpoint-100/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8676da595dfad06b6de4cec45ef3f5e6dec4fca4 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-100/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-1B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 64, + "hidden_act": "silu", + "hidden_size": 2048, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 32, + "num_hidden_layers": 16, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_1b_base_100/checkpoint-100/generation_config.json b/specialized_llm_1b_base_100/checkpoint-100/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-100/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_1b_base_100/checkpoint-100/latest b/specialized_llm_1b_base_100/checkpoint-100/latest new file mode 100644 index 0000000000000000000000000000000000000000..744ae7dbad571b6f37ec6c7066549494261bb59e --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-100/latest @@ -0,0 +1 @@ +global_step100 \ No newline at end of file diff --git a/specialized_llm_1b_base_100/checkpoint-100/model.safetensors b/specialized_llm_1b_base_100/checkpoint-100/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..a9d6379d29a8b895f0d300174403d1d187ac5395 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-100/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d35abf79033e359d06fe85152572828cb6308d89ae2a9bd15273e7481a5dffe7 +size 2471653800 diff --git a/specialized_llm_1b_base_100/checkpoint-100/rng_state_0.pth b/specialized_llm_1b_base_100/checkpoint-100/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..d46a9ba7690e83fef48d0cf5f4c34bd9df6cc737 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-100/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6cb795a5cea0baa625c50007a6c9da09c6bbb5c16b560424070384a479e7d8a6 +size 14512 diff --git a/specialized_llm_1b_base_100/checkpoint-100/rng_state_1.pth b/specialized_llm_1b_base_100/checkpoint-100/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..23784d04394ff924f7fca03236f62241ce5f4b6e --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-100/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f19604377bd828eb366c68946ad997a4ff4d69beaeea93ee58915135768ec63 +size 14512 diff --git a/specialized_llm_1b_base_100/checkpoint-100/scheduler.pt b/specialized_llm_1b_base_100/checkpoint-100/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..bf37b0fad796f509f58d2a4d04c6af9fab293fcc --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-100/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ea217589f6a52e6e5bf252b883fdc2c5bb872bd2fee80104e01128c8070232c3 +size 1064 diff --git a/specialized_llm_1b_base_100/checkpoint-100/special_tokens_map.json b/specialized_llm_1b_base_100/checkpoint-100/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-100/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_1b_base_100/checkpoint-100/tokenizer.json b/specialized_llm_1b_base_100/checkpoint-100/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-100/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_1b_base_100/checkpoint-100/tokenizer_config.json b/specialized_llm_1b_base_100/checkpoint-100/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-100/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_1b_base_100/checkpoint-100/trainer_state.json b/specialized_llm_1b_base_100/checkpoint-100/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..4956d2f5f83e027577fe86ccaae4432dedfd719b --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-100/trainer_state.json @@ -0,0 +1,173 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 2.0, + "eval_steps": 500, + "global_step": 100, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.1, + "grad_norm": 156.9064188116979, + "learning_rate": 2e-05, + "loss": 4.8316, + "step": 5 + }, + { + "epoch": 0.2, + "grad_norm": 82.19226082448304, + "learning_rate": 2e-05, + "loss": 2.013, + "step": 10 + }, + { + "epoch": 0.3, + "grad_norm": 57.27306485371414, + "learning_rate": 2e-05, + "loss": 1.2974, + "step": 15 + }, + { + "epoch": 0.4, + "grad_norm": 48.83225730679657, + "learning_rate": 2e-05, + "loss": 1.0968, + "step": 20 + }, + { + "epoch": 0.5, + "grad_norm": 24.709557874315326, + "learning_rate": 2e-05, + "loss": 1.0172, + "step": 25 + }, + { + "epoch": 0.6, + "grad_norm": 43.78869302264833, + "learning_rate": 2e-05, + "loss": 1.1018, + "step": 30 + }, + { + "epoch": 0.7, + "grad_norm": 33.479250288798106, + "learning_rate": 2e-05, + "loss": 1.4642, + "step": 35 + }, + { + "epoch": 0.8, + "grad_norm": 46.04180725501253, + "learning_rate": 2e-05, + "loss": 0.9675, + "step": 40 + }, + { + "epoch": 0.9, + "grad_norm": 31.218425949463782, + "learning_rate": 2e-05, + "loss": 0.9244, + "step": 45 + }, + { + "epoch": 1.0, + "grad_norm": 35.29186854691775, + "learning_rate": 2e-05, + "loss": 0.9531, + "step": 50 + }, + { + "epoch": 1.1, + "grad_norm": 18.969557282118792, + "learning_rate": 2e-05, + "loss": 0.5228, + "step": 55 + }, + { + "epoch": 1.2, + "grad_norm": 35.06262305967108, + "learning_rate": 2e-05, + "loss": 0.5318, + "step": 60 + }, + { + "epoch": 1.3, + "grad_norm": 33.3160030977369, + "learning_rate": 2e-05, + "loss": 0.874, + "step": 65 + }, + { + "epoch": 1.4, + "grad_norm": 33.850178783961134, + "learning_rate": 2e-05, + "loss": 0.709, + "step": 70 + }, + { + "epoch": 1.5, + "grad_norm": 17.37781621924601, + "learning_rate": 2e-05, + "loss": 0.51, + "step": 75 + }, + { + "epoch": 1.6, + "grad_norm": 25.44851960915303, + "learning_rate": 2e-05, + "loss": 0.3559, + "step": 80 + }, + { + "epoch": 1.7, + "grad_norm": 19.799143426860926, + "learning_rate": 2e-05, + "loss": 0.3874, + "step": 85 + }, + { + "epoch": 1.8, + "grad_norm": 31.361235853692254, + "learning_rate": 2e-05, + "loss": 0.5395, + "step": 90 + }, + { + "epoch": 1.9, + "grad_norm": 17.320442414330888, + "learning_rate": 2e-05, + "loss": 0.5949, + "step": 95 + }, + { + "epoch": 2.0, + "grad_norm": 27.656376406870894, + "learning_rate": 2e-05, + "loss": 0.4936, + "step": 100 + } + ], + "logging_steps": 5, + "max_steps": 100, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 50, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 20761804800.0, + "train_batch_size": 1, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_1b_base_100/checkpoint-100/training_args.bin b/specialized_llm_1b_base_100/checkpoint-100/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..debb279a6ddc9465f6ca9f99f0e4b13a43be4ca2 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-100/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e8bcf08d66135dfa1e81367200ad8401efcc6f0f6add870112244ee90e3786b2 +size 8760 diff --git a/specialized_llm_1b_base_100/checkpoint-100/zero_to_fp32.py b/specialized_llm_1b_base_100/checkpoint-100/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-100/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_1b_base_100/checkpoint-50/config.json b/specialized_llm_1b_base_100/checkpoint-50/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8676da595dfad06b6de4cec45ef3f5e6dec4fca4 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-50/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-1B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 64, + "hidden_act": "silu", + "hidden_size": 2048, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 32, + "num_hidden_layers": 16, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_1b_base_100/checkpoint-50/generation_config.json b/specialized_llm_1b_base_100/checkpoint-50/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-50/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_1b_base_100/checkpoint-50/latest b/specialized_llm_1b_base_100/checkpoint-50/latest new file mode 100644 index 0000000000000000000000000000000000000000..9b4dc801e3fb152ef5c0ee60d309c705a9b01564 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-50/latest @@ -0,0 +1 @@ +global_step50 \ No newline at end of file diff --git a/specialized_llm_1b_base_100/checkpoint-50/model.safetensors b/specialized_llm_1b_base_100/checkpoint-50/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..7b97a21f8d80b6a648f2ed520af4ffd4d2aadc66 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-50/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:198f7f8200b26405061a3c55c38d1f32f604f2ce03b3777b2274f3deed5f5749 +size 2471653800 diff --git a/specialized_llm_1b_base_100/checkpoint-50/rng_state_0.pth b/specialized_llm_1b_base_100/checkpoint-50/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b24ba5257472a7c82c4d4247a4c0210ee74f9e61 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-50/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4 +size 14512 diff --git a/specialized_llm_1b_base_100/checkpoint-50/rng_state_1.pth b/specialized_llm_1b_base_100/checkpoint-50/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..9350a8206512bf8b857f4064425716468c2b7465 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-50/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6 +size 14512 diff --git a/specialized_llm_1b_base_100/checkpoint-50/scheduler.pt b/specialized_llm_1b_base_100/checkpoint-50/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..194e7ca52a6b7ebba52dda11bde7390f9aa1cc76 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-50/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:95ca272310bc0b5867e1ebe7b183b00a4e2513c65c1dbea3410a9a3e527baad9 +size 1064 diff --git a/specialized_llm_1b_base_100/checkpoint-50/special_tokens_map.json b/specialized_llm_1b_base_100/checkpoint-50/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-50/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_1b_base_100/checkpoint-50/tokenizer.json b/specialized_llm_1b_base_100/checkpoint-50/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-50/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_1b_base_100/checkpoint-50/tokenizer_config.json b/specialized_llm_1b_base_100/checkpoint-50/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-50/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_1b_base_100/checkpoint-50/trainer_state.json b/specialized_llm_1b_base_100/checkpoint-50/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..2f0f061364ba69aae8e462fbf1889dd6c2465590 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-50/trainer_state.json @@ -0,0 +1,103 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 50, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.1, + "grad_norm": 156.9064188116979, + "learning_rate": 2e-05, + "loss": 4.8316, + "step": 5 + }, + { + "epoch": 0.2, + "grad_norm": 82.19226082448304, + "learning_rate": 2e-05, + "loss": 2.013, + "step": 10 + }, + { + "epoch": 0.3, + "grad_norm": 57.27306485371414, + "learning_rate": 2e-05, + "loss": 1.2974, + "step": 15 + }, + { + "epoch": 0.4, + "grad_norm": 48.83225730679657, + "learning_rate": 2e-05, + "loss": 1.0968, + "step": 20 + }, + { + "epoch": 0.5, + "grad_norm": 24.709557874315326, + "learning_rate": 2e-05, + "loss": 1.0172, + "step": 25 + }, + { + "epoch": 0.6, + "grad_norm": 43.78869302264833, + "learning_rate": 2e-05, + "loss": 1.1018, + "step": 30 + }, + { + "epoch": 0.7, + "grad_norm": 33.479250288798106, + "learning_rate": 2e-05, + "loss": 1.4642, + "step": 35 + }, + { + "epoch": 0.8, + "grad_norm": 46.04180725501253, + "learning_rate": 2e-05, + "loss": 0.9675, + "step": 40 + }, + { + "epoch": 0.9, + "grad_norm": 31.218425949463782, + "learning_rate": 2e-05, + "loss": 0.9244, + "step": 45 + }, + { + "epoch": 1.0, + "grad_norm": 35.29186854691775, + "learning_rate": 2e-05, + "loss": 0.9531, + "step": 50 + } + ], + "logging_steps": 5, + "max_steps": 100, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 50, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 10380902400.0, + "train_batch_size": 1, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_1b_base_100/checkpoint-50/training_args.bin b/specialized_llm_1b_base_100/checkpoint-50/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..debb279a6ddc9465f6ca9f99f0e4b13a43be4ca2 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-50/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e8bcf08d66135dfa1e81367200ad8401efcc6f0f6add870112244ee90e3786b2 +size 8760 diff --git a/specialized_llm_1b_base_100/checkpoint-50/zero_to_fp32.py b/specialized_llm_1b_base_100/checkpoint-50/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_1b_base_100/checkpoint-50/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_1b_base_10000/checkpoint-313/config.json b/specialized_llm_1b_base_10000/checkpoint-313/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8676da595dfad06b6de4cec45ef3f5e6dec4fca4 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-313/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-1B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 64, + "hidden_act": "silu", + "hidden_size": 2048, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 32, + "num_hidden_layers": 16, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_1b_base_10000/checkpoint-313/generation_config.json b/specialized_llm_1b_base_10000/checkpoint-313/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-313/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_1b_base_10000/checkpoint-313/latest b/specialized_llm_1b_base_10000/checkpoint-313/latest new file mode 100644 index 0000000000000000000000000000000000000000..47fb2084a807bccd66224156e4de1d508c72fa85 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-313/latest @@ -0,0 +1 @@ +global_step313 \ No newline at end of file diff --git a/specialized_llm_1b_base_10000/checkpoint-313/model.safetensors b/specialized_llm_1b_base_10000/checkpoint-313/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c7f4b05d217d2976f7106817082c01f96ea31d3b --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-313/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:567e1618c38ed33b1adf2aec5e2eb181ec8ad6ed93ee8759f5120163baa17999 +size 2471653800 diff --git a/specialized_llm_1b_base_10000/checkpoint-313/rng_state_0.pth b/specialized_llm_1b_base_10000/checkpoint-313/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b24ba5257472a7c82c4d4247a4c0210ee74f9e61 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-313/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4 +size 14512 diff --git a/specialized_llm_1b_base_10000/checkpoint-313/rng_state_1.pth b/specialized_llm_1b_base_10000/checkpoint-313/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..9350a8206512bf8b857f4064425716468c2b7465 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-313/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6 +size 14512 diff --git a/specialized_llm_1b_base_10000/checkpoint-313/scheduler.pt b/specialized_llm_1b_base_10000/checkpoint-313/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..805c667453687561950b7246de69b578f5234b93 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-313/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:78107e860b307640f86e719092e76971135f46f006519249d985e44f93d18407 +size 1064 diff --git a/specialized_llm_1b_base_10000/checkpoint-313/special_tokens_map.json b/specialized_llm_1b_base_10000/checkpoint-313/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-313/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_1b_base_10000/checkpoint-313/tokenizer.json b/specialized_llm_1b_base_10000/checkpoint-313/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-313/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_1b_base_10000/checkpoint-313/tokenizer_config.json b/specialized_llm_1b_base_10000/checkpoint-313/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-313/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_1b_base_10000/checkpoint-313/trainer_state.json b/specialized_llm_1b_base_10000/checkpoint-313/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..e1865d75c639951ef6a2d0a4e9dc15c013e8fa8a --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-313/trainer_state.json @@ -0,0 +1,467 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 313, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.01597444089456869, + "grad_norm": 60.843743003477016, + "learning_rate": 2e-05, + "loss": 3.694, + "step": 5 + }, + { + "epoch": 0.03194888178913738, + "grad_norm": 13.715421326658431, + "learning_rate": 2e-05, + "loss": 1.4876, + "step": 10 + }, + { + "epoch": 0.04792332268370607, + "grad_norm": 10.707591478650698, + "learning_rate": 2e-05, + "loss": 0.8965, + "step": 15 + }, + { + "epoch": 0.06389776357827476, + "grad_norm": 10.684132553954235, + "learning_rate": 2e-05, + "loss": 0.7144, + "step": 20 + }, + { + "epoch": 0.07987220447284345, + "grad_norm": 6.870816173607892, + "learning_rate": 2e-05, + "loss": 0.5764, + "step": 25 + }, + { + "epoch": 0.09584664536741214, + "grad_norm": 9.022501752158144, + "learning_rate": 2e-05, + "loss": 0.4911, + "step": 30 + }, + { + "epoch": 0.11182108626198083, + "grad_norm": 9.066110727116234, + "learning_rate": 2e-05, + "loss": 0.4834, + "step": 35 + }, + { + "epoch": 0.12779552715654952, + "grad_norm": 8.337997396690376, + "learning_rate": 2e-05, + "loss": 0.4688, + "step": 40 + }, + { + "epoch": 0.14376996805111822, + "grad_norm": 6.9103296198663084, + "learning_rate": 2e-05, + "loss": 0.3788, + "step": 45 + }, + { + "epoch": 0.1597444089456869, + "grad_norm": 5.413952877121154, + "learning_rate": 2e-05, + "loss": 0.3565, + "step": 50 + }, + { + "epoch": 0.1757188498402556, + "grad_norm": 7.7969786708469515, + "learning_rate": 2e-05, + "loss": 0.3109, + "step": 55 + }, + { + "epoch": 0.19169329073482427, + "grad_norm": 5.6847660902143895, + "learning_rate": 2e-05, + "loss": 0.349, + "step": 60 + }, + { + "epoch": 0.20766773162939298, + "grad_norm": 4.906392737240063, + "learning_rate": 2e-05, + "loss": 0.3214, + "step": 65 + }, + { + "epoch": 0.22364217252396165, + "grad_norm": 9.419675382452413, + "learning_rate": 2e-05, + "loss": 0.2947, + "step": 70 + }, + { + "epoch": 0.23961661341853036, + "grad_norm": 5.059723686105245, + "learning_rate": 2e-05, + "loss": 0.2683, + "step": 75 + }, + { + "epoch": 0.25559105431309903, + "grad_norm": 3.9997265723508204, + "learning_rate": 2e-05, + "loss": 0.287, + "step": 80 + }, + { + "epoch": 0.2715654952076677, + "grad_norm": 5.831612782740975, + "learning_rate": 2e-05, + "loss": 0.273, + "step": 85 + }, + { + "epoch": 0.28753993610223644, + "grad_norm": 5.9678334596925176, + "learning_rate": 2e-05, + "loss": 0.2752, + "step": 90 + }, + { + "epoch": 0.3035143769968051, + "grad_norm": 4.962993255950741, + "learning_rate": 2e-05, + "loss": 0.3076, + "step": 95 + }, + { + "epoch": 0.3194888178913738, + "grad_norm": 4.316965498307984, + "learning_rate": 2e-05, + "loss": 0.2983, + "step": 100 + }, + { + "epoch": 0.3354632587859425, + "grad_norm": 4.518302405414318, + "learning_rate": 2e-05, + "loss": 0.2878, + "step": 105 + }, + { + "epoch": 0.3514376996805112, + "grad_norm": 4.841322007019883, + "learning_rate": 2e-05, + "loss": 0.2751, + "step": 110 + }, + { + "epoch": 0.36741214057507987, + "grad_norm": 4.924609658771206, + "learning_rate": 2e-05, + "loss": 0.2788, + "step": 115 + }, + { + "epoch": 0.38338658146964855, + "grad_norm": 5.199673919872928, + "learning_rate": 2e-05, + "loss": 0.2529, + "step": 120 + }, + { + "epoch": 0.3993610223642173, + "grad_norm": 5.13883752159027, + "learning_rate": 2e-05, + "loss": 0.2653, + "step": 125 + }, + { + "epoch": 0.41533546325878595, + "grad_norm": 4.902999030159365, + "learning_rate": 2e-05, + "loss": 0.2614, + "step": 130 + }, + { + "epoch": 0.43130990415335463, + "grad_norm": 4.264040791687237, + "learning_rate": 2e-05, + "loss": 0.264, + "step": 135 + }, + { + "epoch": 0.4472843450479233, + "grad_norm": 4.510737448982514, + "learning_rate": 2e-05, + "loss": 0.2696, + "step": 140 + }, + { + "epoch": 0.46325878594249204, + "grad_norm": 3.729238847427858, + "learning_rate": 2e-05, + "loss": 0.2747, + "step": 145 + }, + { + "epoch": 0.4792332268370607, + "grad_norm": 4.831060516750508, + "learning_rate": 2e-05, + "loss": 0.2302, + "step": 150 + }, + { + "epoch": 0.4952076677316294, + "grad_norm": 4.52148180168111, + "learning_rate": 2e-05, + "loss": 0.2687, + "step": 155 + }, + { + "epoch": 0.5111821086261981, + "grad_norm": 4.922254192331322, + "learning_rate": 2e-05, + "loss": 0.297, + "step": 160 + }, + { + "epoch": 0.5271565495207667, + "grad_norm": 3.5911116756924124, + "learning_rate": 2e-05, + "loss": 0.2519, + "step": 165 + }, + { + "epoch": 0.5431309904153354, + "grad_norm": 4.160277693826043, + "learning_rate": 2e-05, + "loss": 0.2285, + "step": 170 + }, + { + "epoch": 0.5591054313099042, + "grad_norm": 4.745760002135895, + "learning_rate": 2e-05, + "loss": 0.2739, + "step": 175 + }, + { + "epoch": 0.5750798722044729, + "grad_norm": 3.1773316725984944, + "learning_rate": 2e-05, + "loss": 0.2137, + "step": 180 + }, + { + "epoch": 0.5910543130990416, + "grad_norm": 4.620712397092621, + "learning_rate": 2e-05, + "loss": 0.2466, + "step": 185 + }, + { + "epoch": 0.6070287539936102, + "grad_norm": 5.666882206389722, + "learning_rate": 2e-05, + "loss": 0.2486, + "step": 190 + }, + { + "epoch": 0.6230031948881789, + "grad_norm": 3.0867967002280685, + "learning_rate": 2e-05, + "loss": 0.2782, + "step": 195 + }, + { + "epoch": 0.6389776357827476, + "grad_norm": 3.7538603354323854, + "learning_rate": 2e-05, + "loss": 0.2513, + "step": 200 + }, + { + "epoch": 0.6549520766773163, + "grad_norm": 3.6225306951755676, + "learning_rate": 2e-05, + "loss": 0.2467, + "step": 205 + }, + { + "epoch": 0.670926517571885, + "grad_norm": 4.28008874195097, + "learning_rate": 2e-05, + "loss": 0.2311, + "step": 210 + }, + { + "epoch": 0.6869009584664537, + "grad_norm": 3.68759418768951, + "learning_rate": 2e-05, + "loss": 0.2162, + "step": 215 + }, + { + "epoch": 0.7028753993610224, + "grad_norm": 5.235261056247263, + "learning_rate": 2e-05, + "loss": 0.2558, + "step": 220 + }, + { + "epoch": 0.7188498402555911, + "grad_norm": 4.929503008941276, + "learning_rate": 2e-05, + "loss": 0.25, + "step": 225 + }, + { + "epoch": 0.7348242811501597, + "grad_norm": 3.537205189585956, + "learning_rate": 2e-05, + "loss": 0.2075, + "step": 230 + }, + { + "epoch": 0.7507987220447284, + "grad_norm": 3.492446396872612, + "learning_rate": 2e-05, + "loss": 0.2306, + "step": 235 + }, + { + "epoch": 0.7667731629392971, + "grad_norm": 2.823423266978643, + "learning_rate": 2e-05, + "loss": 0.2085, + "step": 240 + }, + { + "epoch": 0.7827476038338658, + "grad_norm": 3.2679842225374487, + "learning_rate": 2e-05, + "loss": 0.222, + "step": 245 + }, + { + "epoch": 0.7987220447284346, + "grad_norm": 3.20950873306656, + "learning_rate": 2e-05, + "loss": 0.2017, + "step": 250 + }, + { + "epoch": 0.8146964856230032, + "grad_norm": 2.9433433611037154, + "learning_rate": 2e-05, + "loss": 0.2007, + "step": 255 + }, + { + "epoch": 0.8306709265175719, + "grad_norm": 3.96730012674014, + "learning_rate": 2e-05, + "loss": 0.1934, + "step": 260 + }, + { + "epoch": 0.8466453674121406, + "grad_norm": 3.693289054735904, + "learning_rate": 2e-05, + "loss": 0.2307, + "step": 265 + }, + { + "epoch": 0.8626198083067093, + "grad_norm": 4.424564622153617, + "learning_rate": 2e-05, + "loss": 0.2194, + "step": 270 + }, + { + "epoch": 0.8785942492012779, + "grad_norm": 3.577701187723575, + "learning_rate": 2e-05, + "loss": 0.1923, + "step": 275 + }, + { + "epoch": 0.8945686900958466, + "grad_norm": 3.46615392885482, + "learning_rate": 2e-05, + "loss": 0.2173, + "step": 280 + }, + { + "epoch": 0.9105431309904153, + "grad_norm": 2.6304364131429554, + "learning_rate": 2e-05, + "loss": 0.2124, + "step": 285 + }, + { + "epoch": 0.9265175718849841, + "grad_norm": 3.6404023403158767, + "learning_rate": 2e-05, + "loss": 0.1913, + "step": 290 + }, + { + "epoch": 0.9424920127795527, + "grad_norm": 4.100696784376308, + "learning_rate": 2e-05, + "loss": 0.2334, + "step": 295 + }, + { + "epoch": 0.9584664536741214, + "grad_norm": 3.2536599703116025, + "learning_rate": 2e-05, + "loss": 0.238, + "step": 300 + }, + { + "epoch": 0.9744408945686901, + "grad_norm": 5.713523666518673, + "learning_rate": 2e-05, + "loss": 0.2012, + "step": 305 + }, + { + "epoch": 0.9904153354632588, + "grad_norm": 3.7269431770312442, + "learning_rate": 2e-05, + "loss": 0.2205, + "step": 310 + } + ], + "logging_steps": 5, + "max_steps": 626, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 313, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 1039751184384.0, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_1b_base_10000/checkpoint-313/training_args.bin b/specialized_llm_1b_base_10000/checkpoint-313/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..3b0c38f0b9c67215c5480b0d8c00b9ec6b2874f0 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-313/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cd7ab44e69ff3a90c8162884e89f9bd3a7b3555d7cf85c0f07f9c5cfee48fa89 +size 8760 diff --git a/specialized_llm_1b_base_10000/checkpoint-313/zero_to_fp32.py b/specialized_llm_1b_base_10000/checkpoint-313/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-313/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_1b_base_10000/checkpoint-626/config.json b/specialized_llm_1b_base_10000/checkpoint-626/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8676da595dfad06b6de4cec45ef3f5e6dec4fca4 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-626/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-1B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 64, + "hidden_act": "silu", + "hidden_size": 2048, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 32, + "num_hidden_layers": 16, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_1b_base_10000/checkpoint-626/generation_config.json b/specialized_llm_1b_base_10000/checkpoint-626/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-626/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_1b_base_10000/checkpoint-626/latest b/specialized_llm_1b_base_10000/checkpoint-626/latest new file mode 100644 index 0000000000000000000000000000000000000000..d80594736a8159c5c9880759a7899a9635a45fa4 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-626/latest @@ -0,0 +1 @@ +global_step626 \ No newline at end of file diff --git a/specialized_llm_1b_base_10000/checkpoint-626/model.safetensors b/specialized_llm_1b_base_10000/checkpoint-626/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..22154161b9a7790adee291e7ff6666f1b0c48678 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-626/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bb75e41b8e3a4554f4a00d3aa75d59526ef2be68a6a0218a73f7a45425bfb5bc +size 2471653800 diff --git a/specialized_llm_1b_base_10000/checkpoint-626/rng_state_0.pth b/specialized_llm_1b_base_10000/checkpoint-626/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..d46a9ba7690e83fef48d0cf5f4c34bd9df6cc737 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-626/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6cb795a5cea0baa625c50007a6c9da09c6bbb5c16b560424070384a479e7d8a6 +size 14512 diff --git a/specialized_llm_1b_base_10000/checkpoint-626/rng_state_1.pth b/specialized_llm_1b_base_10000/checkpoint-626/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..23784d04394ff924f7fca03236f62241ce5f4b6e --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-626/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f19604377bd828eb366c68946ad997a4ff4d69beaeea93ee58915135768ec63 +size 14512 diff --git a/specialized_llm_1b_base_10000/checkpoint-626/scheduler.pt b/specialized_llm_1b_base_10000/checkpoint-626/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..716663ab093ea3d8f15565da71b6ae8a62a873a7 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-626/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:28479851fef09f93747e85a38a3575655ca7ff2ad46f7dd5d0f2cbe0638cef0c +size 1064 diff --git a/specialized_llm_1b_base_10000/checkpoint-626/special_tokens_map.json b/specialized_llm_1b_base_10000/checkpoint-626/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-626/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_1b_base_10000/checkpoint-626/tokenizer.json b/specialized_llm_1b_base_10000/checkpoint-626/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-626/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_1b_base_10000/checkpoint-626/tokenizer_config.json b/specialized_llm_1b_base_10000/checkpoint-626/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-626/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_1b_base_10000/checkpoint-626/trainer_state.json b/specialized_llm_1b_base_10000/checkpoint-626/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..3a612f7b4244866ebdd15c2d8596c091aa4da095 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-626/trainer_state.json @@ -0,0 +1,908 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 2.0, + "eval_steps": 500, + "global_step": 626, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.01597444089456869, + "grad_norm": 60.843743003477016, + "learning_rate": 2e-05, + "loss": 3.694, + "step": 5 + }, + { + "epoch": 0.03194888178913738, + "grad_norm": 13.715421326658431, + "learning_rate": 2e-05, + "loss": 1.4876, + "step": 10 + }, + { + "epoch": 0.04792332268370607, + "grad_norm": 10.707591478650698, + "learning_rate": 2e-05, + "loss": 0.8965, + "step": 15 + }, + { + "epoch": 0.06389776357827476, + "grad_norm": 10.684132553954235, + "learning_rate": 2e-05, + "loss": 0.7144, + "step": 20 + }, + { + "epoch": 0.07987220447284345, + "grad_norm": 6.870816173607892, + "learning_rate": 2e-05, + "loss": 0.5764, + "step": 25 + }, + { + "epoch": 0.09584664536741214, + "grad_norm": 9.022501752158144, + "learning_rate": 2e-05, + "loss": 0.4911, + "step": 30 + }, + { + "epoch": 0.11182108626198083, + "grad_norm": 9.066110727116234, + "learning_rate": 2e-05, + "loss": 0.4834, + "step": 35 + }, + { + "epoch": 0.12779552715654952, + "grad_norm": 8.337997396690376, + "learning_rate": 2e-05, + "loss": 0.4688, + "step": 40 + }, + { + "epoch": 0.14376996805111822, + "grad_norm": 6.9103296198663084, + "learning_rate": 2e-05, + "loss": 0.3788, + "step": 45 + }, + { + "epoch": 0.1597444089456869, + "grad_norm": 5.413952877121154, + "learning_rate": 2e-05, + "loss": 0.3565, + "step": 50 + }, + { + "epoch": 0.1757188498402556, + "grad_norm": 7.7969786708469515, + "learning_rate": 2e-05, + "loss": 0.3109, + "step": 55 + }, + { + "epoch": 0.19169329073482427, + "grad_norm": 5.6847660902143895, + "learning_rate": 2e-05, + "loss": 0.349, + "step": 60 + }, + { + "epoch": 0.20766773162939298, + "grad_norm": 4.906392737240063, + "learning_rate": 2e-05, + "loss": 0.3214, + "step": 65 + }, + { + "epoch": 0.22364217252396165, + "grad_norm": 9.419675382452413, + "learning_rate": 2e-05, + "loss": 0.2947, + "step": 70 + }, + { + "epoch": 0.23961661341853036, + "grad_norm": 5.059723686105245, + "learning_rate": 2e-05, + "loss": 0.2683, + "step": 75 + }, + { + "epoch": 0.25559105431309903, + "grad_norm": 3.9997265723508204, + "learning_rate": 2e-05, + "loss": 0.287, + "step": 80 + }, + { + "epoch": 0.2715654952076677, + "grad_norm": 5.831612782740975, + "learning_rate": 2e-05, + "loss": 0.273, + "step": 85 + }, + { + "epoch": 0.28753993610223644, + "grad_norm": 5.9678334596925176, + "learning_rate": 2e-05, + "loss": 0.2752, + "step": 90 + }, + { + "epoch": 0.3035143769968051, + "grad_norm": 4.962993255950741, + "learning_rate": 2e-05, + "loss": 0.3076, + "step": 95 + }, + { + "epoch": 0.3194888178913738, + "grad_norm": 4.316965498307984, + "learning_rate": 2e-05, + "loss": 0.2983, + "step": 100 + }, + { + "epoch": 0.3354632587859425, + "grad_norm": 4.518302405414318, + "learning_rate": 2e-05, + "loss": 0.2878, + "step": 105 + }, + { + "epoch": 0.3514376996805112, + "grad_norm": 4.841322007019883, + "learning_rate": 2e-05, + "loss": 0.2751, + "step": 110 + }, + { + "epoch": 0.36741214057507987, + "grad_norm": 4.924609658771206, + "learning_rate": 2e-05, + "loss": 0.2788, + "step": 115 + }, + { + "epoch": 0.38338658146964855, + "grad_norm": 5.199673919872928, + "learning_rate": 2e-05, + "loss": 0.2529, + "step": 120 + }, + { + "epoch": 0.3993610223642173, + "grad_norm": 5.13883752159027, + "learning_rate": 2e-05, + "loss": 0.2653, + "step": 125 + }, + { + "epoch": 0.41533546325878595, + "grad_norm": 4.902999030159365, + "learning_rate": 2e-05, + "loss": 0.2614, + "step": 130 + }, + { + "epoch": 0.43130990415335463, + "grad_norm": 4.264040791687237, + "learning_rate": 2e-05, + "loss": 0.264, + "step": 135 + }, + { + "epoch": 0.4472843450479233, + "grad_norm": 4.510737448982514, + "learning_rate": 2e-05, + "loss": 0.2696, + "step": 140 + }, + { + "epoch": 0.46325878594249204, + "grad_norm": 3.729238847427858, + "learning_rate": 2e-05, + "loss": 0.2747, + "step": 145 + }, + { + "epoch": 0.4792332268370607, + "grad_norm": 4.831060516750508, + "learning_rate": 2e-05, + "loss": 0.2302, + "step": 150 + }, + { + "epoch": 0.4952076677316294, + "grad_norm": 4.52148180168111, + "learning_rate": 2e-05, + "loss": 0.2687, + "step": 155 + }, + { + "epoch": 0.5111821086261981, + "grad_norm": 4.922254192331322, + "learning_rate": 2e-05, + "loss": 0.297, + "step": 160 + }, + { + "epoch": 0.5271565495207667, + "grad_norm": 3.5911116756924124, + "learning_rate": 2e-05, + "loss": 0.2519, + "step": 165 + }, + { + "epoch": 0.5431309904153354, + "grad_norm": 4.160277693826043, + "learning_rate": 2e-05, + "loss": 0.2285, + "step": 170 + }, + { + "epoch": 0.5591054313099042, + "grad_norm": 4.745760002135895, + "learning_rate": 2e-05, + "loss": 0.2739, + "step": 175 + }, + { + "epoch": 0.5750798722044729, + "grad_norm": 3.1773316725984944, + "learning_rate": 2e-05, + "loss": 0.2137, + "step": 180 + }, + { + "epoch": 0.5910543130990416, + "grad_norm": 4.620712397092621, + "learning_rate": 2e-05, + "loss": 0.2466, + "step": 185 + }, + { + "epoch": 0.6070287539936102, + "grad_norm": 5.666882206389722, + "learning_rate": 2e-05, + "loss": 0.2486, + "step": 190 + }, + { + "epoch": 0.6230031948881789, + "grad_norm": 3.0867967002280685, + "learning_rate": 2e-05, + "loss": 0.2782, + "step": 195 + }, + { + "epoch": 0.6389776357827476, + "grad_norm": 3.7538603354323854, + "learning_rate": 2e-05, + "loss": 0.2513, + "step": 200 + }, + { + "epoch": 0.6549520766773163, + "grad_norm": 3.6225306951755676, + "learning_rate": 2e-05, + "loss": 0.2467, + "step": 205 + }, + { + "epoch": 0.670926517571885, + "grad_norm": 4.28008874195097, + "learning_rate": 2e-05, + "loss": 0.2311, + "step": 210 + }, + { + "epoch": 0.6869009584664537, + "grad_norm": 3.68759418768951, + "learning_rate": 2e-05, + "loss": 0.2162, + "step": 215 + }, + { + "epoch": 0.7028753993610224, + "grad_norm": 5.235261056247263, + "learning_rate": 2e-05, + "loss": 0.2558, + "step": 220 + }, + { + "epoch": 0.7188498402555911, + "grad_norm": 4.929503008941276, + "learning_rate": 2e-05, + "loss": 0.25, + "step": 225 + }, + { + "epoch": 0.7348242811501597, + "grad_norm": 3.537205189585956, + "learning_rate": 2e-05, + "loss": 0.2075, + "step": 230 + }, + { + "epoch": 0.7507987220447284, + "grad_norm": 3.492446396872612, + "learning_rate": 2e-05, + "loss": 0.2306, + "step": 235 + }, + { + "epoch": 0.7667731629392971, + "grad_norm": 2.823423266978643, + "learning_rate": 2e-05, + "loss": 0.2085, + "step": 240 + }, + { + "epoch": 0.7827476038338658, + "grad_norm": 3.2679842225374487, + "learning_rate": 2e-05, + "loss": 0.222, + "step": 245 + }, + { + "epoch": 0.7987220447284346, + "grad_norm": 3.20950873306656, + "learning_rate": 2e-05, + "loss": 0.2017, + "step": 250 + }, + { + "epoch": 0.8146964856230032, + "grad_norm": 2.9433433611037154, + "learning_rate": 2e-05, + "loss": 0.2007, + "step": 255 + }, + { + "epoch": 0.8306709265175719, + "grad_norm": 3.96730012674014, + "learning_rate": 2e-05, + "loss": 0.1934, + "step": 260 + }, + { + "epoch": 0.8466453674121406, + "grad_norm": 3.693289054735904, + "learning_rate": 2e-05, + "loss": 0.2307, + "step": 265 + }, + { + "epoch": 0.8626198083067093, + "grad_norm": 4.424564622153617, + "learning_rate": 2e-05, + "loss": 0.2194, + "step": 270 + }, + { + "epoch": 0.8785942492012779, + "grad_norm": 3.577701187723575, + "learning_rate": 2e-05, + "loss": 0.1923, + "step": 275 + }, + { + "epoch": 0.8945686900958466, + "grad_norm": 3.46615392885482, + "learning_rate": 2e-05, + "loss": 0.2173, + "step": 280 + }, + { + "epoch": 0.9105431309904153, + "grad_norm": 2.6304364131429554, + "learning_rate": 2e-05, + "loss": 0.2124, + "step": 285 + }, + { + "epoch": 0.9265175718849841, + "grad_norm": 3.6404023403158767, + "learning_rate": 2e-05, + "loss": 0.1913, + "step": 290 + }, + { + "epoch": 0.9424920127795527, + "grad_norm": 4.100696784376308, + "learning_rate": 2e-05, + "loss": 0.2334, + "step": 295 + }, + { + "epoch": 0.9584664536741214, + "grad_norm": 3.2536599703116025, + "learning_rate": 2e-05, + "loss": 0.238, + "step": 300 + }, + { + "epoch": 0.9744408945686901, + "grad_norm": 5.713523666518673, + "learning_rate": 2e-05, + "loss": 0.2012, + "step": 305 + }, + { + "epoch": 0.9904153354632588, + "grad_norm": 3.7269431770312442, + "learning_rate": 2e-05, + "loss": 0.2205, + "step": 310 + }, + { + "epoch": 1.0063897763578276, + "grad_norm": 2.785641357162258, + "learning_rate": 2e-05, + "loss": 0.1765, + "step": 315 + }, + { + "epoch": 1.0223642172523961, + "grad_norm": 2.365767290478278, + "learning_rate": 2e-05, + "loss": 0.1389, + "step": 320 + }, + { + "epoch": 1.038338658146965, + "grad_norm": 4.630749863320276, + "learning_rate": 2e-05, + "loss": 0.1421, + "step": 325 + }, + { + "epoch": 1.0543130990415335, + "grad_norm": 2.9700801405289647, + "learning_rate": 2e-05, + "loss": 0.1452, + "step": 330 + }, + { + "epoch": 1.0702875399361023, + "grad_norm": 2.690230914351533, + "learning_rate": 2e-05, + "loss": 0.1522, + "step": 335 + }, + { + "epoch": 1.0862619808306708, + "grad_norm": 3.816301736524856, + "learning_rate": 2e-05, + "loss": 0.1494, + "step": 340 + }, + { + "epoch": 1.1022364217252396, + "grad_norm": 3.5031509681511, + "learning_rate": 2e-05, + "loss": 0.1654, + "step": 345 + }, + { + "epoch": 1.1182108626198084, + "grad_norm": 3.1288271037535806, + "learning_rate": 2e-05, + "loss": 0.1486, + "step": 350 + }, + { + "epoch": 1.134185303514377, + "grad_norm": 2.1043632953638127, + "learning_rate": 2e-05, + "loss": 0.1705, + "step": 355 + }, + { + "epoch": 1.1501597444089458, + "grad_norm": 2.4917198492977133, + "learning_rate": 2e-05, + "loss": 0.1329, + "step": 360 + }, + { + "epoch": 1.1661341853035143, + "grad_norm": 3.2902949047622294, + "learning_rate": 2e-05, + "loss": 0.1381, + "step": 365 + }, + { + "epoch": 1.182108626198083, + "grad_norm": 4.314219560448868, + "learning_rate": 2e-05, + "loss": 0.1393, + "step": 370 + }, + { + "epoch": 1.1980830670926517, + "grad_norm": 2.969271228874231, + "learning_rate": 2e-05, + "loss": 0.1189, + "step": 375 + }, + { + "epoch": 1.2140575079872205, + "grad_norm": 3.433008882767771, + "learning_rate": 2e-05, + "loss": 0.1586, + "step": 380 + }, + { + "epoch": 1.230031948881789, + "grad_norm": 2.6850823314537826, + "learning_rate": 2e-05, + "loss": 0.1531, + "step": 385 + }, + { + "epoch": 1.2460063897763578, + "grad_norm": 2.914079022400779, + "learning_rate": 2e-05, + "loss": 0.1263, + "step": 390 + }, + { + "epoch": 1.2619808306709266, + "grad_norm": 2.86778707006628, + "learning_rate": 2e-05, + "loss": 0.1352, + "step": 395 + }, + { + "epoch": 1.2779552715654952, + "grad_norm": 3.028461599857327, + "learning_rate": 2e-05, + "loss": 0.1451, + "step": 400 + }, + { + "epoch": 1.293929712460064, + "grad_norm": 3.0938670809763185, + "learning_rate": 2e-05, + "loss": 0.1707, + "step": 405 + }, + { + "epoch": 1.3099041533546325, + "grad_norm": 3.654704346434203, + "learning_rate": 2e-05, + "loss": 0.1484, + "step": 410 + }, + { + "epoch": 1.3258785942492013, + "grad_norm": 3.6961791864825795, + "learning_rate": 2e-05, + "loss": 0.1533, + "step": 415 + }, + { + "epoch": 1.34185303514377, + "grad_norm": 2.1202014698141523, + "learning_rate": 2e-05, + "loss": 0.1393, + "step": 420 + }, + { + "epoch": 1.3578274760383386, + "grad_norm": 3.539387240282418, + "learning_rate": 2e-05, + "loss": 0.1433, + "step": 425 + }, + { + "epoch": 1.3738019169329074, + "grad_norm": 2.931915742305631, + "learning_rate": 2e-05, + "loss": 0.1545, + "step": 430 + }, + { + "epoch": 1.389776357827476, + "grad_norm": 2.2164462311300888, + "learning_rate": 2e-05, + "loss": 0.1361, + "step": 435 + }, + { + "epoch": 1.4057507987220448, + "grad_norm": 2.2929637945504497, + "learning_rate": 2e-05, + "loss": 0.1531, + "step": 440 + }, + { + "epoch": 1.4217252396166133, + "grad_norm": 3.770586903975807, + "learning_rate": 2e-05, + "loss": 0.1386, + "step": 445 + }, + { + "epoch": 1.4376996805111821, + "grad_norm": 11.849820843608146, + "learning_rate": 2e-05, + "loss": 0.1529, + "step": 450 + }, + { + "epoch": 1.4536741214057507, + "grad_norm": 2.93976382440641, + "learning_rate": 2e-05, + "loss": 0.1536, + "step": 455 + }, + { + "epoch": 1.4696485623003195, + "grad_norm": 3.2750622644102725, + "learning_rate": 2e-05, + "loss": 0.1621, + "step": 460 + }, + { + "epoch": 1.4856230031948883, + "grad_norm": 2.9611632467311595, + "learning_rate": 2e-05, + "loss": 0.1791, + "step": 465 + }, + { + "epoch": 1.5015974440894568, + "grad_norm": 2.431555194128456, + "learning_rate": 2e-05, + "loss": 0.1404, + "step": 470 + }, + { + "epoch": 1.5175718849840254, + "grad_norm": 2.115146223899505, + "learning_rate": 2e-05, + "loss": 0.1401, + "step": 475 + }, + { + "epoch": 1.5335463258785942, + "grad_norm": 2.7989840724052524, + "learning_rate": 2e-05, + "loss": 0.1485, + "step": 480 + }, + { + "epoch": 1.549520766773163, + "grad_norm": 2.9029401250193088, + "learning_rate": 2e-05, + "loss": 0.1545, + "step": 485 + }, + { + "epoch": 1.5654952076677318, + "grad_norm": 2.0657901166190293, + "learning_rate": 2e-05, + "loss": 0.1516, + "step": 490 + }, + { + "epoch": 1.5814696485623003, + "grad_norm": 2.230709660999229, + "learning_rate": 2e-05, + "loss": 0.1252, + "step": 495 + }, + { + "epoch": 1.5974440894568689, + "grad_norm": 3.0985470991056294, + "learning_rate": 2e-05, + "loss": 0.1464, + "step": 500 + }, + { + "epoch": 1.6134185303514377, + "grad_norm": 2.6663625826764825, + "learning_rate": 2e-05, + "loss": 0.1526, + "step": 505 + }, + { + "epoch": 1.6293929712460065, + "grad_norm": 2.437654228782535, + "learning_rate": 2e-05, + "loss": 0.1316, + "step": 510 + }, + { + "epoch": 1.645367412140575, + "grad_norm": 2.2598086279374647, + "learning_rate": 2e-05, + "loss": 0.1394, + "step": 515 + }, + { + "epoch": 1.6613418530351438, + "grad_norm": 2.9319268776898326, + "learning_rate": 2e-05, + "loss": 0.1423, + "step": 520 + }, + { + "epoch": 1.6773162939297124, + "grad_norm": 3.187627898184853, + "learning_rate": 2e-05, + "loss": 0.1291, + "step": 525 + }, + { + "epoch": 1.6932907348242812, + "grad_norm": 3.1327989945443697, + "learning_rate": 2e-05, + "loss": 0.1521, + "step": 530 + }, + { + "epoch": 1.70926517571885, + "grad_norm": 1.9782589909644759, + "learning_rate": 2e-05, + "loss": 0.1437, + "step": 535 + }, + { + "epoch": 1.7252396166134185, + "grad_norm": 2.438552646987993, + "learning_rate": 2e-05, + "loss": 0.1512, + "step": 540 + }, + { + "epoch": 1.741214057507987, + "grad_norm": 3.600465564056201, + "learning_rate": 2e-05, + "loss": 0.1498, + "step": 545 + }, + { + "epoch": 1.7571884984025559, + "grad_norm": 2.168405127958081, + "learning_rate": 2e-05, + "loss": 0.1481, + "step": 550 + }, + { + "epoch": 1.7731629392971247, + "grad_norm": 2.334876977845878, + "learning_rate": 2e-05, + "loss": 0.1551, + "step": 555 + }, + { + "epoch": 1.7891373801916934, + "grad_norm": 2.641970389322493, + "learning_rate": 2e-05, + "loss": 0.1668, + "step": 560 + }, + { + "epoch": 1.805111821086262, + "grad_norm": 2.2229072571922415, + "learning_rate": 2e-05, + "loss": 0.167, + "step": 565 + }, + { + "epoch": 1.8210862619808306, + "grad_norm": 1.8684212885547438, + "learning_rate": 2e-05, + "loss": 0.1376, + "step": 570 + }, + { + "epoch": 1.8370607028753994, + "grad_norm": 2.6409986333573077, + "learning_rate": 2e-05, + "loss": 0.1251, + "step": 575 + }, + { + "epoch": 1.8530351437699681, + "grad_norm": 2.72166037847938, + "learning_rate": 2e-05, + "loss": 0.1336, + "step": 580 + }, + { + "epoch": 1.8690095846645367, + "grad_norm": 3.5744706956254917, + "learning_rate": 2e-05, + "loss": 0.1445, + "step": 585 + }, + { + "epoch": 1.8849840255591053, + "grad_norm": 3.4365284139089987, + "learning_rate": 2e-05, + "loss": 0.1783, + "step": 590 + }, + { + "epoch": 1.900958466453674, + "grad_norm": 3.3136302324072466, + "learning_rate": 2e-05, + "loss": 0.1374, + "step": 595 + }, + { + "epoch": 1.9169329073482428, + "grad_norm": 2.2620470060306834, + "learning_rate": 2e-05, + "loss": 0.132, + "step": 600 + }, + { + "epoch": 1.9329073482428116, + "grad_norm": 2.7150242075661337, + "learning_rate": 2e-05, + "loss": 0.1493, + "step": 605 + }, + { + "epoch": 1.9488817891373802, + "grad_norm": 2.5282767550469276, + "learning_rate": 2e-05, + "loss": 0.1371, + "step": 610 + }, + { + "epoch": 1.9648562300319488, + "grad_norm": 3.1783278506953945, + "learning_rate": 2e-05, + "loss": 0.1593, + "step": 615 + }, + { + "epoch": 1.9808306709265175, + "grad_norm": 2.6176673225806537, + "learning_rate": 2e-05, + "loss": 0.1385, + "step": 620 + }, + { + "epoch": 1.9968051118210863, + "grad_norm": 2.860490324850932, + "learning_rate": 2e-05, + "loss": 0.1355, + "step": 625 + } + ], + "logging_steps": 5, + "max_steps": 626, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 313, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 2079502368768.0, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_1b_base_10000/checkpoint-626/training_args.bin b/specialized_llm_1b_base_10000/checkpoint-626/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..3b0c38f0b9c67215c5480b0d8c00b9ec6b2874f0 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-626/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cd7ab44e69ff3a90c8162884e89f9bd3a7b3555d7cf85c0f07f9c5cfee48fa89 +size 8760 diff --git a/specialized_llm_1b_base_10000/checkpoint-626/zero_to_fp32.py b/specialized_llm_1b_base_10000/checkpoint-626/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_1b_base_10000/checkpoint-626/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_1b_base_2000/checkpoint-125/config.json b/specialized_llm_1b_base_2000/checkpoint-125/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8676da595dfad06b6de4cec45ef3f5e6dec4fca4 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-125/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-1B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 64, + "hidden_act": "silu", + "hidden_size": 2048, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 32, + "num_hidden_layers": 16, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_1b_base_2000/checkpoint-125/generation_config.json b/specialized_llm_1b_base_2000/checkpoint-125/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-125/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_1b_base_2000/checkpoint-125/latest b/specialized_llm_1b_base_2000/checkpoint-125/latest new file mode 100644 index 0000000000000000000000000000000000000000..ec11df2484fba73585bfe0e447f43f9ca1290f4a --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-125/latest @@ -0,0 +1 @@ +global_step125 \ No newline at end of file diff --git a/specialized_llm_1b_base_2000/checkpoint-125/model.safetensors b/specialized_llm_1b_base_2000/checkpoint-125/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..8453a0fcc9d8e96b83f82979386a96559b680732 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-125/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2dab7009f78b8a4316e2fdb95ec5a8f6abb5aeb3eff80483862c497be31bea72 +size 2471653800 diff --git a/specialized_llm_1b_base_2000/checkpoint-125/rng_state_0.pth b/specialized_llm_1b_base_2000/checkpoint-125/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b24ba5257472a7c82c4d4247a4c0210ee74f9e61 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-125/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4 +size 14512 diff --git a/specialized_llm_1b_base_2000/checkpoint-125/rng_state_1.pth b/specialized_llm_1b_base_2000/checkpoint-125/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..9350a8206512bf8b857f4064425716468c2b7465 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-125/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6 +size 14512 diff --git a/specialized_llm_1b_base_2000/checkpoint-125/scheduler.pt b/specialized_llm_1b_base_2000/checkpoint-125/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..6e565a7f07b92af83948fbce6664cd8057f5f1ab --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-125/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:95c3f002de042ad31f1f48d346f1b605f1ce309da8c5f5d6e32a1c04df47b27a +size 1064 diff --git a/specialized_llm_1b_base_2000/checkpoint-125/special_tokens_map.json b/specialized_llm_1b_base_2000/checkpoint-125/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-125/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_1b_base_2000/checkpoint-125/tokenizer.json b/specialized_llm_1b_base_2000/checkpoint-125/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-125/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_1b_base_2000/checkpoint-125/tokenizer_config.json b/specialized_llm_1b_base_2000/checkpoint-125/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-125/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_1b_base_2000/checkpoint-125/trainer_state.json b/specialized_llm_1b_base_2000/checkpoint-125/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..190c34ae892af728abe80c154812826933b1928e --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-125/trainer_state.json @@ -0,0 +1,208 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 125, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.04, + "grad_norm": 60.51989036301097, + "learning_rate": 2e-05, + "loss": 3.7993, + "step": 5 + }, + { + "epoch": 0.08, + "grad_norm": 12.783994605516952, + "learning_rate": 2e-05, + "loss": 1.4349, + "step": 10 + }, + { + "epoch": 0.12, + "grad_norm": 11.184480147142077, + "learning_rate": 2e-05, + "loss": 0.8769, + "step": 15 + }, + { + "epoch": 0.16, + "grad_norm": 8.849278492706924, + "learning_rate": 2e-05, + "loss": 0.7879, + "step": 20 + }, + { + "epoch": 0.2, + "grad_norm": 12.600796263152677, + "learning_rate": 2e-05, + "loss": 0.6732, + "step": 25 + }, + { + "epoch": 0.24, + "grad_norm": 8.110425822243785, + "learning_rate": 2e-05, + "loss": 0.5983, + "step": 30 + }, + { + "epoch": 0.28, + "grad_norm": 14.412028441905905, + "learning_rate": 2e-05, + "loss": 0.6491, + "step": 35 + }, + { + "epoch": 0.32, + "grad_norm": 11.7792531969068, + "learning_rate": 2e-05, + "loss": 0.5352, + "step": 40 + }, + { + "epoch": 0.36, + "grad_norm": 8.463525934713235, + "learning_rate": 2e-05, + "loss": 0.4526, + "step": 45 + }, + { + "epoch": 0.4, + "grad_norm": 10.625446487804753, + "learning_rate": 2e-05, + "loss": 0.4269, + "step": 50 + }, + { + "epoch": 0.44, + "grad_norm": 8.983708587080217, + "learning_rate": 2e-05, + "loss": 0.4418, + "step": 55 + }, + { + "epoch": 0.48, + "grad_norm": 8.701600823267356, + "learning_rate": 2e-05, + "loss": 0.4164, + "step": 60 + }, + { + "epoch": 0.52, + "grad_norm": 7.405812697681439, + "learning_rate": 2e-05, + "loss": 0.3979, + "step": 65 + }, + { + "epoch": 0.56, + "grad_norm": 6.369639403254452, + "learning_rate": 2e-05, + "loss": 0.3763, + "step": 70 + }, + { + "epoch": 0.6, + "grad_norm": 6.749143734649831, + "learning_rate": 2e-05, + "loss": 0.3146, + "step": 75 + }, + { + "epoch": 0.64, + "grad_norm": 7.438705268856564, + "learning_rate": 2e-05, + "loss": 0.3722, + "step": 80 + }, + { + "epoch": 0.68, + "grad_norm": 7.074961972324366, + "learning_rate": 2e-05, + "loss": 0.3751, + "step": 85 + }, + { + "epoch": 0.72, + "grad_norm": 9.769779867578004, + "learning_rate": 2e-05, + "loss": 0.3791, + "step": 90 + }, + { + "epoch": 0.76, + "grad_norm": 8.37026626628948, + "learning_rate": 2e-05, + "loss": 0.3, + "step": 95 + }, + { + "epoch": 0.8, + "grad_norm": 7.507890435969867, + "learning_rate": 2e-05, + "loss": 0.3894, + "step": 100 + }, + { + "epoch": 0.84, + "grad_norm": 5.861409261850995, + "learning_rate": 2e-05, + "loss": 0.3768, + "step": 105 + }, + { + "epoch": 0.88, + "grad_norm": 14.890114799420392, + "learning_rate": 2e-05, + "loss": 0.3293, + "step": 110 + }, + { + "epoch": 0.92, + "grad_norm": 7.0730652360136075, + "learning_rate": 2e-05, + "loss": 0.2917, + "step": 115 + }, + { + "epoch": 0.96, + "grad_norm": 7.686429934357609, + "learning_rate": 2e-05, + "loss": 0.3233, + "step": 120 + }, + { + "epoch": 1.0, + "grad_norm": 9.185979473830198, + "learning_rate": 2e-05, + "loss": 0.3607, + "step": 125 + } + ], + "logging_steps": 5, + "max_steps": 250, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 125, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 207618048000.0, + "train_batch_size": 8, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_1b_base_2000/checkpoint-125/training_args.bin b/specialized_llm_1b_base_2000/checkpoint-125/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..ae5c7b607318415d9a9c468dc3457ee0d8bfe357 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-125/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:70e61be25569bf13e2d415eb2f4f9134002544a01667cf4cc5c9a4452a745394 +size 8760 diff --git a/specialized_llm_1b_base_2000/checkpoint-125/zero_to_fp32.py b/specialized_llm_1b_base_2000/checkpoint-125/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-125/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_1b_base_2000/checkpoint-250/config.json b/specialized_llm_1b_base_2000/checkpoint-250/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8676da595dfad06b6de4cec45ef3f5e6dec4fca4 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-250/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-1B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 64, + "hidden_act": "silu", + "hidden_size": 2048, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 32, + "num_hidden_layers": 16, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_1b_base_2000/checkpoint-250/generation_config.json b/specialized_llm_1b_base_2000/checkpoint-250/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-250/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_1b_base_2000/checkpoint-250/latest b/specialized_llm_1b_base_2000/checkpoint-250/latest new file mode 100644 index 0000000000000000000000000000000000000000..87449ff1a854ba4a77ea33fbc24adaed3311d6b1 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-250/latest @@ -0,0 +1 @@ +global_step250 \ No newline at end of file diff --git a/specialized_llm_1b_base_2000/checkpoint-250/model.safetensors b/specialized_llm_1b_base_2000/checkpoint-250/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c44ec27a0eda29996df2fa11ea7ced7af33a7833 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-250/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c48e53fad24de49f073f318d23235cd5f8dc4c027c9dd60d1d8faebc67461b36 +size 2471653800 diff --git a/specialized_llm_1b_base_2000/checkpoint-250/rng_state_0.pth b/specialized_llm_1b_base_2000/checkpoint-250/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..d46a9ba7690e83fef48d0cf5f4c34bd9df6cc737 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-250/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6cb795a5cea0baa625c50007a6c9da09c6bbb5c16b560424070384a479e7d8a6 +size 14512 diff --git a/specialized_llm_1b_base_2000/checkpoint-250/rng_state_1.pth b/specialized_llm_1b_base_2000/checkpoint-250/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..23784d04394ff924f7fca03236f62241ce5f4b6e --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-250/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f19604377bd828eb366c68946ad997a4ff4d69beaeea93ee58915135768ec63 +size 14512 diff --git a/specialized_llm_1b_base_2000/checkpoint-250/scheduler.pt b/specialized_llm_1b_base_2000/checkpoint-250/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..6ef24269547fb7b5001955fc39c7832f5b5fbe17 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-250/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c95ea9768932fc7293e24852961b6812ebc68c0fe02a77bc8140020c807b4c16 +size 1064 diff --git a/specialized_llm_1b_base_2000/checkpoint-250/special_tokens_map.json b/specialized_llm_1b_base_2000/checkpoint-250/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-250/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_1b_base_2000/checkpoint-250/tokenizer.json b/specialized_llm_1b_base_2000/checkpoint-250/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-250/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_1b_base_2000/checkpoint-250/tokenizer_config.json b/specialized_llm_1b_base_2000/checkpoint-250/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-250/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_1b_base_2000/checkpoint-250/trainer_state.json b/specialized_llm_1b_base_2000/checkpoint-250/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..d4600ce03f58acb7c50cd80ddeb2c256fff0f8aa --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-250/trainer_state.json @@ -0,0 +1,383 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 2.0, + "eval_steps": 500, + "global_step": 250, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.04, + "grad_norm": 60.51989036301097, + "learning_rate": 2e-05, + "loss": 3.7993, + "step": 5 + }, + { + "epoch": 0.08, + "grad_norm": 12.783994605516952, + "learning_rate": 2e-05, + "loss": 1.4349, + "step": 10 + }, + { + "epoch": 0.12, + "grad_norm": 11.184480147142077, + "learning_rate": 2e-05, + "loss": 0.8769, + "step": 15 + }, + { + "epoch": 0.16, + "grad_norm": 8.849278492706924, + "learning_rate": 2e-05, + "loss": 0.7879, + "step": 20 + }, + { + "epoch": 0.2, + "grad_norm": 12.600796263152677, + "learning_rate": 2e-05, + "loss": 0.6732, + "step": 25 + }, + { + "epoch": 0.24, + "grad_norm": 8.110425822243785, + "learning_rate": 2e-05, + "loss": 0.5983, + "step": 30 + }, + { + "epoch": 0.28, + "grad_norm": 14.412028441905905, + "learning_rate": 2e-05, + "loss": 0.6491, + "step": 35 + }, + { + "epoch": 0.32, + "grad_norm": 11.7792531969068, + "learning_rate": 2e-05, + "loss": 0.5352, + "step": 40 + }, + { + "epoch": 0.36, + "grad_norm": 8.463525934713235, + "learning_rate": 2e-05, + "loss": 0.4526, + "step": 45 + }, + { + "epoch": 0.4, + "grad_norm": 10.625446487804753, + "learning_rate": 2e-05, + "loss": 0.4269, + "step": 50 + }, + { + "epoch": 0.44, + "grad_norm": 8.983708587080217, + "learning_rate": 2e-05, + "loss": 0.4418, + "step": 55 + }, + { + "epoch": 0.48, + "grad_norm": 8.701600823267356, + "learning_rate": 2e-05, + "loss": 0.4164, + "step": 60 + }, + { + "epoch": 0.52, + "grad_norm": 7.405812697681439, + "learning_rate": 2e-05, + "loss": 0.3979, + "step": 65 + }, + { + "epoch": 0.56, + "grad_norm": 6.369639403254452, + "learning_rate": 2e-05, + "loss": 0.3763, + "step": 70 + }, + { + "epoch": 0.6, + "grad_norm": 6.749143734649831, + "learning_rate": 2e-05, + "loss": 0.3146, + "step": 75 + }, + { + "epoch": 0.64, + "grad_norm": 7.438705268856564, + "learning_rate": 2e-05, + "loss": 0.3722, + "step": 80 + }, + { + "epoch": 0.68, + "grad_norm": 7.074961972324366, + "learning_rate": 2e-05, + "loss": 0.3751, + "step": 85 + }, + { + "epoch": 0.72, + "grad_norm": 9.769779867578004, + "learning_rate": 2e-05, + "loss": 0.3791, + "step": 90 + }, + { + "epoch": 0.76, + "grad_norm": 8.37026626628948, + "learning_rate": 2e-05, + "loss": 0.3, + "step": 95 + }, + { + "epoch": 0.8, + "grad_norm": 7.507890435969867, + "learning_rate": 2e-05, + "loss": 0.3894, + "step": 100 + }, + { + "epoch": 0.84, + "grad_norm": 5.861409261850995, + "learning_rate": 2e-05, + "loss": 0.3768, + "step": 105 + }, + { + "epoch": 0.88, + "grad_norm": 14.890114799420392, + "learning_rate": 2e-05, + "loss": 0.3293, + "step": 110 + }, + { + "epoch": 0.92, + "grad_norm": 7.0730652360136075, + "learning_rate": 2e-05, + "loss": 0.2917, + "step": 115 + }, + { + "epoch": 0.96, + "grad_norm": 7.686429934357609, + "learning_rate": 2e-05, + "loss": 0.3233, + "step": 120 + }, + { + "epoch": 1.0, + "grad_norm": 9.185979473830198, + "learning_rate": 2e-05, + "loss": 0.3607, + "step": 125 + }, + { + "epoch": 1.04, + "grad_norm": 6.003925766039965, + "learning_rate": 2e-05, + "loss": 0.2255, + "step": 130 + }, + { + "epoch": 1.08, + "grad_norm": 6.48390390068548, + "learning_rate": 2e-05, + "loss": 0.2494, + "step": 135 + }, + { + "epoch": 1.12, + "grad_norm": 5.3075420579252786, + "learning_rate": 2e-05, + "loss": 0.212, + "step": 140 + }, + { + "epoch": 1.16, + "grad_norm": 6.173103500055621, + "learning_rate": 2e-05, + "loss": 0.1972, + "step": 145 + }, + { + "epoch": 1.2, + "grad_norm": 4.907102644272397, + "learning_rate": 2e-05, + "loss": 0.1871, + "step": 150 + }, + { + "epoch": 1.24, + "grad_norm": 7.412438667122787, + "learning_rate": 2e-05, + "loss": 0.1828, + "step": 155 + }, + { + "epoch": 1.28, + "grad_norm": 4.897218027156499, + "learning_rate": 2e-05, + "loss": 0.2101, + "step": 160 + }, + { + "epoch": 1.32, + "grad_norm": 4.889462935655387, + "learning_rate": 2e-05, + "loss": 0.1971, + "step": 165 + }, + { + "epoch": 1.3599999999999999, + "grad_norm": 5.847597854939917, + "learning_rate": 2e-05, + "loss": 0.2031, + "step": 170 + }, + { + "epoch": 1.4, + "grad_norm": 5.818673123168294, + "learning_rate": 2e-05, + "loss": 0.1811, + "step": 175 + }, + { + "epoch": 1.44, + "grad_norm": 5.450783792537049, + "learning_rate": 2e-05, + "loss": 0.209, + "step": 180 + }, + { + "epoch": 1.48, + "grad_norm": 7.570419326332733, + "learning_rate": 2e-05, + "loss": 0.2175, + "step": 185 + }, + { + "epoch": 1.52, + "grad_norm": 14.983727248344971, + "learning_rate": 2e-05, + "loss": 0.2298, + "step": 190 + }, + { + "epoch": 1.56, + "grad_norm": 9.45388331487112, + "learning_rate": 2e-05, + "loss": 0.2031, + "step": 195 + }, + { + "epoch": 1.6, + "grad_norm": 4.929702701754927, + "learning_rate": 2e-05, + "loss": 0.2001, + "step": 200 + }, + { + "epoch": 1.6400000000000001, + "grad_norm": 13.009067841742118, + "learning_rate": 2e-05, + "loss": 0.214, + "step": 205 + }, + { + "epoch": 1.6800000000000002, + "grad_norm": 4.923332806364954, + "learning_rate": 2e-05, + "loss": 0.2157, + "step": 210 + }, + { + "epoch": 1.72, + "grad_norm": 5.295642292542354, + "learning_rate": 2e-05, + "loss": 0.2234, + "step": 215 + }, + { + "epoch": 1.76, + "grad_norm": 4.30915989950107, + "learning_rate": 2e-05, + "loss": 0.1806, + "step": 220 + }, + { + "epoch": 1.8, + "grad_norm": 4.038327468062023, + "learning_rate": 2e-05, + "loss": 0.1665, + "step": 225 + }, + { + "epoch": 1.8399999999999999, + "grad_norm": 6.898900807783765, + "learning_rate": 2e-05, + "loss": 0.2327, + "step": 230 + }, + { + "epoch": 1.88, + "grad_norm": 5.25886961571408, + "learning_rate": 2e-05, + "loss": 0.2484, + "step": 235 + }, + { + "epoch": 1.92, + "grad_norm": 3.501854290830227, + "learning_rate": 2e-05, + "loss": 0.1636, + "step": 240 + }, + { + "epoch": 1.96, + "grad_norm": 4.008523104749397, + "learning_rate": 2e-05, + "loss": 0.1991, + "step": 245 + }, + { + "epoch": 2.0, + "grad_norm": 5.318117435697754, + "learning_rate": 2e-05, + "loss": 0.1975, + "step": 250 + } + ], + "logging_steps": 5, + "max_steps": 250, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 125, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 415236096000.0, + "train_batch_size": 8, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_1b_base_2000/checkpoint-250/training_args.bin b/specialized_llm_1b_base_2000/checkpoint-250/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..ae5c7b607318415d9a9c468dc3457ee0d8bfe357 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-250/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:70e61be25569bf13e2d415eb2f4f9134002544a01667cf4cc5c9a4452a745394 +size 8760 diff --git a/specialized_llm_1b_base_2000/checkpoint-250/zero_to_fp32.py b/specialized_llm_1b_base_2000/checkpoint-250/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_1b_base_2000/checkpoint-250/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_1b_base_500/checkpoint-125/config.json b/specialized_llm_1b_base_500/checkpoint-125/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8676da595dfad06b6de4cec45ef3f5e6dec4fca4 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-125/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-1B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 64, + "hidden_act": "silu", + "hidden_size": 2048, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 32, + "num_hidden_layers": 16, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_1b_base_500/checkpoint-125/generation_config.json b/specialized_llm_1b_base_500/checkpoint-125/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-125/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_1b_base_500/checkpoint-125/latest b/specialized_llm_1b_base_500/checkpoint-125/latest new file mode 100644 index 0000000000000000000000000000000000000000..ec11df2484fba73585bfe0e447f43f9ca1290f4a --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-125/latest @@ -0,0 +1 @@ +global_step125 \ No newline at end of file diff --git a/specialized_llm_1b_base_500/checkpoint-125/model.safetensors b/specialized_llm_1b_base_500/checkpoint-125/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..fc7392720a8f3da4ea34c51c3a5073b02bbe44b9 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-125/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7ac75bd3be011aacf4a1658e1dc19e5fa9886fb4d3e7a5795ea2bdb81cb57a21 +size 2471653800 diff --git a/specialized_llm_1b_base_500/checkpoint-125/rng_state_0.pth b/specialized_llm_1b_base_500/checkpoint-125/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b24ba5257472a7c82c4d4247a4c0210ee74f9e61 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-125/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4 +size 14512 diff --git a/specialized_llm_1b_base_500/checkpoint-125/rng_state_1.pth b/specialized_llm_1b_base_500/checkpoint-125/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..9350a8206512bf8b857f4064425716468c2b7465 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-125/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6 +size 14512 diff --git a/specialized_llm_1b_base_500/checkpoint-125/scheduler.pt b/specialized_llm_1b_base_500/checkpoint-125/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..6e565a7f07b92af83948fbce6664cd8057f5f1ab --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-125/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:95c3f002de042ad31f1f48d346f1b605f1ce309da8c5f5d6e32a1c04df47b27a +size 1064 diff --git a/specialized_llm_1b_base_500/checkpoint-125/special_tokens_map.json b/specialized_llm_1b_base_500/checkpoint-125/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-125/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_1b_base_500/checkpoint-125/tokenizer.json b/specialized_llm_1b_base_500/checkpoint-125/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-125/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_1b_base_500/checkpoint-125/tokenizer_config.json b/specialized_llm_1b_base_500/checkpoint-125/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-125/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_1b_base_500/checkpoint-125/trainer_state.json b/specialized_llm_1b_base_500/checkpoint-125/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..c32f98de3c3f04933fbcc4478e670fe57bf546a2 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-125/trainer_state.json @@ -0,0 +1,208 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 125, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.04, + "grad_norm": 69.15027620004496, + "learning_rate": 2e-05, + "loss": 4.3274, + "step": 5 + }, + { + "epoch": 0.08, + "grad_norm": 36.49710876205765, + "learning_rate": 2e-05, + "loss": 1.9718, + "step": 10 + }, + { + "epoch": 0.12, + "grad_norm": 24.8055261097805, + "learning_rate": 2e-05, + "loss": 1.4913, + "step": 15 + }, + { + "epoch": 0.16, + "grad_norm": 26.286722407659735, + "learning_rate": 2e-05, + "loss": 1.1718, + "step": 20 + }, + { + "epoch": 0.2, + "grad_norm": 14.092344410160173, + "learning_rate": 2e-05, + "loss": 1.0216, + "step": 25 + }, + { + "epoch": 0.24, + "grad_norm": 24.095252135725403, + "learning_rate": 2e-05, + "loss": 1.18, + "step": 30 + }, + { + "epoch": 0.28, + "grad_norm": 26.034786977551857, + "learning_rate": 2e-05, + "loss": 1.3656, + "step": 35 + }, + { + "epoch": 0.32, + "grad_norm": 19.74523045093618, + "learning_rate": 2e-05, + "loss": 0.963, + "step": 40 + }, + { + "epoch": 0.36, + "grad_norm": 15.086150628942262, + "learning_rate": 2e-05, + "loss": 0.6993, + "step": 45 + }, + { + "epoch": 0.4, + "grad_norm": 22.81186764893039, + "learning_rate": 2e-05, + "loss": 0.8852, + "step": 50 + }, + { + "epoch": 0.44, + "grad_norm": 24.154919644827586, + "learning_rate": 2e-05, + "loss": 0.7103, + "step": 55 + }, + { + "epoch": 0.48, + "grad_norm": 14.464311116387043, + "learning_rate": 2e-05, + "loss": 0.6815, + "step": 60 + }, + { + "epoch": 0.52, + "grad_norm": 20.86338253606335, + "learning_rate": 2e-05, + "loss": 0.7158, + "step": 65 + }, + { + "epoch": 0.56, + "grad_norm": 38.49398014281269, + "learning_rate": 2e-05, + "loss": 0.5528, + "step": 70 + }, + { + "epoch": 0.6, + "grad_norm": 15.93352750255708, + "learning_rate": 2e-05, + "loss": 0.5452, + "step": 75 + }, + { + "epoch": 0.64, + "grad_norm": 20.234798241856517, + "learning_rate": 2e-05, + "loss": 0.5531, + "step": 80 + }, + { + "epoch": 0.68, + "grad_norm": 20.574339477494412, + "learning_rate": 2e-05, + "loss": 0.6899, + "step": 85 + }, + { + "epoch": 0.72, + "grad_norm": 14.848866164171431, + "learning_rate": 2e-05, + "loss": 0.4746, + "step": 90 + }, + { + "epoch": 0.76, + "grad_norm": 12.47798187227874, + "learning_rate": 2e-05, + "loss": 0.5769, + "step": 95 + }, + { + "epoch": 0.8, + "grad_norm": 20.998213075300583, + "learning_rate": 2e-05, + "loss": 0.587, + "step": 100 + }, + { + "epoch": 0.84, + "grad_norm": 11.961466112685061, + "learning_rate": 2e-05, + "loss": 0.5254, + "step": 105 + }, + { + "epoch": 0.88, + "grad_norm": 15.858618669706862, + "learning_rate": 2e-05, + "loss": 0.4271, + "step": 110 + }, + { + "epoch": 0.92, + "grad_norm": 9.72476364060356, + "learning_rate": 2e-05, + "loss": 0.5526, + "step": 115 + }, + { + "epoch": 0.96, + "grad_norm": 18.46133323815773, + "learning_rate": 2e-05, + "loss": 0.6082, + "step": 120 + }, + { + "epoch": 1.0, + "grad_norm": 12.093965673374104, + "learning_rate": 2e-05, + "loss": 0.6124, + "step": 125 + } + ], + "logging_steps": 5, + "max_steps": 250, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 125, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 51904512000.0, + "train_batch_size": 2, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_1b_base_500/checkpoint-125/training_args.bin b/specialized_llm_1b_base_500/checkpoint-125/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..fb8ceb72958d4747d31aec83346935a78e3abd3b --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-125/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:11f22188d346f63f27e58f8eab5e9aaed7973f6d7f05d71e00ca9f80e7ac5756 +size 8760 diff --git a/specialized_llm_1b_base_500/checkpoint-125/zero_to_fp32.py b/specialized_llm_1b_base_500/checkpoint-125/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-125/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_1b_base_500/checkpoint-250/config.json b/specialized_llm_1b_base_500/checkpoint-250/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8676da595dfad06b6de4cec45ef3f5e6dec4fca4 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-250/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-1B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 64, + "hidden_act": "silu", + "hidden_size": 2048, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 32, + "num_hidden_layers": 16, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_1b_base_500/checkpoint-250/generation_config.json b/specialized_llm_1b_base_500/checkpoint-250/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-250/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_1b_base_500/checkpoint-250/latest b/specialized_llm_1b_base_500/checkpoint-250/latest new file mode 100644 index 0000000000000000000000000000000000000000..87449ff1a854ba4a77ea33fbc24adaed3311d6b1 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-250/latest @@ -0,0 +1 @@ +global_step250 \ No newline at end of file diff --git a/specialized_llm_1b_base_500/checkpoint-250/model.safetensors b/specialized_llm_1b_base_500/checkpoint-250/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..48571d0356c9239d342ae977e94ef838acc45a7b --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-250/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:29c251b159b6d56352f27a0a779135da013e1b776dc2ffab389b9dbfa4f5bc73 +size 2471653800 diff --git a/specialized_llm_1b_base_500/checkpoint-250/rng_state_0.pth b/specialized_llm_1b_base_500/checkpoint-250/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..d46a9ba7690e83fef48d0cf5f4c34bd9df6cc737 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-250/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6cb795a5cea0baa625c50007a6c9da09c6bbb5c16b560424070384a479e7d8a6 +size 14512 diff --git a/specialized_llm_1b_base_500/checkpoint-250/rng_state_1.pth b/specialized_llm_1b_base_500/checkpoint-250/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..23784d04394ff924f7fca03236f62241ce5f4b6e --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-250/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f19604377bd828eb366c68946ad997a4ff4d69beaeea93ee58915135768ec63 +size 14512 diff --git a/specialized_llm_1b_base_500/checkpoint-250/scheduler.pt b/specialized_llm_1b_base_500/checkpoint-250/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..6ef24269547fb7b5001955fc39c7832f5b5fbe17 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-250/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c95ea9768932fc7293e24852961b6812ebc68c0fe02a77bc8140020c807b4c16 +size 1064 diff --git a/specialized_llm_1b_base_500/checkpoint-250/special_tokens_map.json b/specialized_llm_1b_base_500/checkpoint-250/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-250/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_1b_base_500/checkpoint-250/tokenizer.json b/specialized_llm_1b_base_500/checkpoint-250/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-250/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_1b_base_500/checkpoint-250/tokenizer_config.json b/specialized_llm_1b_base_500/checkpoint-250/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-250/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_1b_base_500/checkpoint-250/trainer_state.json b/specialized_llm_1b_base_500/checkpoint-250/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..909758893294cd6bd54c2163aa7d2d435321e73a --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-250/trainer_state.json @@ -0,0 +1,383 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 2.0, + "eval_steps": 500, + "global_step": 250, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.04, + "grad_norm": 69.15027620004496, + "learning_rate": 2e-05, + "loss": 4.3274, + "step": 5 + }, + { + "epoch": 0.08, + "grad_norm": 36.49710876205765, + "learning_rate": 2e-05, + "loss": 1.9718, + "step": 10 + }, + { + "epoch": 0.12, + "grad_norm": 24.8055261097805, + "learning_rate": 2e-05, + "loss": 1.4913, + "step": 15 + }, + { + "epoch": 0.16, + "grad_norm": 26.286722407659735, + "learning_rate": 2e-05, + "loss": 1.1718, + "step": 20 + }, + { + "epoch": 0.2, + "grad_norm": 14.092344410160173, + "learning_rate": 2e-05, + "loss": 1.0216, + "step": 25 + }, + { + "epoch": 0.24, + "grad_norm": 24.095252135725403, + "learning_rate": 2e-05, + "loss": 1.18, + "step": 30 + }, + { + "epoch": 0.28, + "grad_norm": 26.034786977551857, + "learning_rate": 2e-05, + "loss": 1.3656, + "step": 35 + }, + { + "epoch": 0.32, + "grad_norm": 19.74523045093618, + "learning_rate": 2e-05, + "loss": 0.963, + "step": 40 + }, + { + "epoch": 0.36, + "grad_norm": 15.086150628942262, + "learning_rate": 2e-05, + "loss": 0.6993, + "step": 45 + }, + { + "epoch": 0.4, + "grad_norm": 22.81186764893039, + "learning_rate": 2e-05, + "loss": 0.8852, + "step": 50 + }, + { + "epoch": 0.44, + "grad_norm": 24.154919644827586, + "learning_rate": 2e-05, + "loss": 0.7103, + "step": 55 + }, + { + "epoch": 0.48, + "grad_norm": 14.464311116387043, + "learning_rate": 2e-05, + "loss": 0.6815, + "step": 60 + }, + { + "epoch": 0.52, + "grad_norm": 20.86338253606335, + "learning_rate": 2e-05, + "loss": 0.7158, + "step": 65 + }, + { + "epoch": 0.56, + "grad_norm": 38.49398014281269, + "learning_rate": 2e-05, + "loss": 0.5528, + "step": 70 + }, + { + "epoch": 0.6, + "grad_norm": 15.93352750255708, + "learning_rate": 2e-05, + "loss": 0.5452, + "step": 75 + }, + { + "epoch": 0.64, + "grad_norm": 20.234798241856517, + "learning_rate": 2e-05, + "loss": 0.5531, + "step": 80 + }, + { + "epoch": 0.68, + "grad_norm": 20.574339477494412, + "learning_rate": 2e-05, + "loss": 0.6899, + "step": 85 + }, + { + "epoch": 0.72, + "grad_norm": 14.848866164171431, + "learning_rate": 2e-05, + "loss": 0.4746, + "step": 90 + }, + { + "epoch": 0.76, + "grad_norm": 12.47798187227874, + "learning_rate": 2e-05, + "loss": 0.5769, + "step": 95 + }, + { + "epoch": 0.8, + "grad_norm": 20.998213075300583, + "learning_rate": 2e-05, + "loss": 0.587, + "step": 100 + }, + { + "epoch": 0.84, + "grad_norm": 11.961466112685061, + "learning_rate": 2e-05, + "loss": 0.5254, + "step": 105 + }, + { + "epoch": 0.88, + "grad_norm": 15.858618669706862, + "learning_rate": 2e-05, + "loss": 0.4271, + "step": 110 + }, + { + "epoch": 0.92, + "grad_norm": 9.72476364060356, + "learning_rate": 2e-05, + "loss": 0.5526, + "step": 115 + }, + { + "epoch": 0.96, + "grad_norm": 18.46133323815773, + "learning_rate": 2e-05, + "loss": 0.6082, + "step": 120 + }, + { + "epoch": 1.0, + "grad_norm": 12.093965673374104, + "learning_rate": 2e-05, + "loss": 0.6124, + "step": 125 + }, + { + "epoch": 1.04, + "grad_norm": 19.220797595735586, + "learning_rate": 2e-05, + "loss": 0.4599, + "step": 130 + }, + { + "epoch": 1.08, + "grad_norm": 19.151423690756495, + "learning_rate": 2e-05, + "loss": 0.389, + "step": 135 + }, + { + "epoch": 1.12, + "grad_norm": 13.40992199303181, + "learning_rate": 2e-05, + "loss": 0.2975, + "step": 140 + }, + { + "epoch": 1.16, + "grad_norm": 10.046697936696779, + "learning_rate": 2e-05, + "loss": 0.3785, + "step": 145 + }, + { + "epoch": 1.2, + "grad_norm": 6.513714178810899, + "learning_rate": 2e-05, + "loss": 0.2799, + "step": 150 + }, + { + "epoch": 1.24, + "grad_norm": 14.089824167980698, + "learning_rate": 2e-05, + "loss": 0.3421, + "step": 155 + }, + { + "epoch": 1.28, + "grad_norm": 13.513393593844734, + "learning_rate": 2e-05, + "loss": 0.2655, + "step": 160 + }, + { + "epoch": 1.32, + "grad_norm": 25.122155578498877, + "learning_rate": 2e-05, + "loss": 0.3634, + "step": 165 + }, + { + "epoch": 1.3599999999999999, + "grad_norm": 13.816047938121084, + "learning_rate": 2e-05, + "loss": 0.3564, + "step": 170 + }, + { + "epoch": 1.4, + "grad_norm": 13.058617150482025, + "learning_rate": 2e-05, + "loss": 0.2378, + "step": 175 + }, + { + "epoch": 1.44, + "grad_norm": 16.675971443472367, + "learning_rate": 2e-05, + "loss": 0.4209, + "step": 180 + }, + { + "epoch": 1.48, + "grad_norm": 16.941769389876264, + "learning_rate": 2e-05, + "loss": 0.3273, + "step": 185 + }, + { + "epoch": 1.52, + "grad_norm": 6.751669141276701, + "learning_rate": 2e-05, + "loss": 0.3268, + "step": 190 + }, + { + "epoch": 1.56, + "grad_norm": 11.419120947279817, + "learning_rate": 2e-05, + "loss": 0.3371, + "step": 195 + }, + { + "epoch": 1.6, + "grad_norm": 11.813047171351725, + "learning_rate": 2e-05, + "loss": 0.3289, + "step": 200 + }, + { + "epoch": 1.6400000000000001, + "grad_norm": 18.756843298079573, + "learning_rate": 2e-05, + "loss": 0.3628, + "step": 205 + }, + { + "epoch": 1.6800000000000002, + "grad_norm": 16.183837784389414, + "learning_rate": 2e-05, + "loss": 0.4263, + "step": 210 + }, + { + "epoch": 1.72, + "grad_norm": 9.977814004149012, + "learning_rate": 2e-05, + "loss": 0.319, + "step": 215 + }, + { + "epoch": 1.76, + "grad_norm": 11.407933923418177, + "learning_rate": 2e-05, + "loss": 0.3669, + "step": 220 + }, + { + "epoch": 1.8, + "grad_norm": 9.33556648113996, + "learning_rate": 2e-05, + "loss": 0.3148, + "step": 225 + }, + { + "epoch": 1.8399999999999999, + "grad_norm": 11.313039204784054, + "learning_rate": 2e-05, + "loss": 0.3649, + "step": 230 + }, + { + "epoch": 1.88, + "grad_norm": 10.329284266872657, + "learning_rate": 2e-05, + "loss": 0.3849, + "step": 235 + }, + { + "epoch": 1.92, + "grad_norm": 8.762719219074954, + "learning_rate": 2e-05, + "loss": 0.3287, + "step": 240 + }, + { + "epoch": 1.96, + "grad_norm": 9.656520393175446, + "learning_rate": 2e-05, + "loss": 0.2524, + "step": 245 + }, + { + "epoch": 2.0, + "grad_norm": 8.499512927264902, + "learning_rate": 2e-05, + "loss": 0.3317, + "step": 250 + } + ], + "logging_steps": 5, + "max_steps": 250, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 125, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 103809024000.0, + "train_batch_size": 2, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_1b_base_500/checkpoint-250/training_args.bin b/specialized_llm_1b_base_500/checkpoint-250/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..fb8ceb72958d4747d31aec83346935a78e3abd3b --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-250/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:11f22188d346f63f27e58f8eab5e9aaed7973f6d7f05d71e00ca9f80e7ac5756 +size 8760 diff --git a/specialized_llm_1b_base_500/checkpoint-250/zero_to_fp32.py b/specialized_llm_1b_base_500/checkpoint-250/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_1b_base_500/checkpoint-250/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_1b_base_5000/checkpoint-157/config.json b/specialized_llm_1b_base_5000/checkpoint-157/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8676da595dfad06b6de4cec45ef3f5e6dec4fca4 --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-157/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-1B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 64, + "hidden_act": "silu", + "hidden_size": 2048, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 32, + "num_hidden_layers": 16, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_1b_base_5000/checkpoint-157/generation_config.json b/specialized_llm_1b_base_5000/checkpoint-157/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-157/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_1b_base_5000/checkpoint-157/latest b/specialized_llm_1b_base_5000/checkpoint-157/latest new file mode 100644 index 0000000000000000000000000000000000000000..47fa3d261fa7445a0b517686f5e796c93b00b08f --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-157/latest @@ -0,0 +1 @@ +global_step157 \ No newline at end of file diff --git a/specialized_llm_1b_base_5000/checkpoint-157/model.safetensors b/specialized_llm_1b_base_5000/checkpoint-157/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..bab8c85fbd5690cc68ba6fdc7be74a5106cd7e6a --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-157/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ee687f82393e28f69d89b3ac2491e70242eda3b336ab66531870406bd00afeb1 +size 2471653800 diff --git a/specialized_llm_1b_base_5000/checkpoint-157/rng_state_0.pth b/specialized_llm_1b_base_5000/checkpoint-157/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b24ba5257472a7c82c4d4247a4c0210ee74f9e61 --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-157/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4 +size 14512 diff --git a/specialized_llm_1b_base_5000/checkpoint-157/rng_state_1.pth b/specialized_llm_1b_base_5000/checkpoint-157/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..9350a8206512bf8b857f4064425716468c2b7465 --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-157/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6 +size 14512 diff --git a/specialized_llm_1b_base_5000/checkpoint-157/scheduler.pt b/specialized_llm_1b_base_5000/checkpoint-157/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..40415cbfe4e8a20b238fdd0e80cb4741a586ae9c --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-157/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:39808648d67ac4ba6c4877e87fe75893a26b564388581db72e20b5c72c8ed9f3 +size 1064 diff --git a/specialized_llm_1b_base_5000/checkpoint-157/special_tokens_map.json b/specialized_llm_1b_base_5000/checkpoint-157/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-157/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_1b_base_5000/checkpoint-157/tokenizer.json b/specialized_llm_1b_base_5000/checkpoint-157/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-157/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_1b_base_5000/checkpoint-157/tokenizer_config.json b/specialized_llm_1b_base_5000/checkpoint-157/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-157/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_1b_base_5000/checkpoint-157/trainer_state.json b/specialized_llm_1b_base_5000/checkpoint-157/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..5d7b5f2bbec2efc8195f07682fb6e50d02f4c9fc --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-157/trainer_state.json @@ -0,0 +1,250 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 157, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.03184713375796178, + "grad_norm": 37.66314323037216, + "learning_rate": 2e-05, + "loss": 3.7447, + "step": 5 + }, + { + "epoch": 0.06369426751592357, + "grad_norm": 14.724589278360234, + "learning_rate": 2e-05, + "loss": 1.1615, + "step": 10 + }, + { + "epoch": 0.09554140127388536, + "grad_norm": 13.441210751466988, + "learning_rate": 2e-05, + "loss": 0.8305, + "step": 15 + }, + { + "epoch": 0.12738853503184713, + "grad_norm": 6.8030882091003715, + "learning_rate": 2e-05, + "loss": 0.6265, + "step": 20 + }, + { + "epoch": 0.1592356687898089, + "grad_norm": 8.243623988332963, + "learning_rate": 2e-05, + "loss": 0.5303, + "step": 25 + }, + { + "epoch": 0.1910828025477707, + "grad_norm": 6.3471640294272955, + "learning_rate": 2e-05, + "loss": 0.5258, + "step": 30 + }, + { + "epoch": 0.2229299363057325, + "grad_norm": 7.411888189562901, + "learning_rate": 2e-05, + "loss": 0.4387, + "step": 35 + }, + { + "epoch": 0.25477707006369427, + "grad_norm": 7.782865258374749, + "learning_rate": 2e-05, + "loss": 0.4305, + "step": 40 + }, + { + "epoch": 0.28662420382165604, + "grad_norm": 6.701266336178135, + "learning_rate": 2e-05, + "loss": 0.3431, + "step": 45 + }, + { + "epoch": 0.3184713375796178, + "grad_norm": 4.430021329163281, + "learning_rate": 2e-05, + "loss": 0.2647, + "step": 50 + }, + { + "epoch": 0.3503184713375796, + "grad_norm": 6.4583401741640944, + "learning_rate": 2e-05, + "loss": 0.2896, + "step": 55 + }, + { + "epoch": 0.3821656050955414, + "grad_norm": 6.865477632135474, + "learning_rate": 2e-05, + "loss": 0.2543, + "step": 60 + }, + { + "epoch": 0.4140127388535032, + "grad_norm": 6.196144097493654, + "learning_rate": 2e-05, + "loss": 0.2463, + "step": 65 + }, + { + "epoch": 0.445859872611465, + "grad_norm": 5.10199147383032, + "learning_rate": 2e-05, + "loss": 0.2436, + "step": 70 + }, + { + "epoch": 0.47770700636942676, + "grad_norm": 5.97094810826287, + "learning_rate": 2e-05, + "loss": 0.2613, + "step": 75 + }, + { + "epoch": 0.5095541401273885, + "grad_norm": 4.379695528407616, + "learning_rate": 2e-05, + "loss": 0.2587, + "step": 80 + }, + { + "epoch": 0.5414012738853503, + "grad_norm": 4.248287167178241, + "learning_rate": 2e-05, + "loss": 0.2646, + "step": 85 + }, + { + "epoch": 0.5732484076433121, + "grad_norm": 4.718852658442149, + "learning_rate": 2e-05, + "loss": 0.2607, + "step": 90 + }, + { + "epoch": 0.6050955414012739, + "grad_norm": 4.023176138851368, + "learning_rate": 2e-05, + "loss": 0.2248, + "step": 95 + }, + { + "epoch": 0.6369426751592356, + "grad_norm": 4.454515869310625, + "learning_rate": 2e-05, + "loss": 0.2107, + "step": 100 + }, + { + "epoch": 0.6687898089171974, + "grad_norm": 3.798113311632056, + "learning_rate": 2e-05, + "loss": 0.1919, + "step": 105 + }, + { + "epoch": 0.7006369426751592, + "grad_norm": 4.28120993551294, + "learning_rate": 2e-05, + "loss": 0.2243, + "step": 110 + }, + { + "epoch": 0.732484076433121, + "grad_norm": 3.57043135580374, + "learning_rate": 2e-05, + "loss": 0.2178, + "step": 115 + }, + { + "epoch": 0.7643312101910829, + "grad_norm": 3.646995627774241, + "learning_rate": 2e-05, + "loss": 0.236, + "step": 120 + }, + { + "epoch": 0.7961783439490446, + "grad_norm": 4.465757164365836, + "learning_rate": 2e-05, + "loss": 0.2101, + "step": 125 + }, + { + "epoch": 0.8280254777070064, + "grad_norm": 5.144321152284542, + "learning_rate": 2e-05, + "loss": 0.2051, + "step": 130 + }, + { + "epoch": 0.8598726114649682, + "grad_norm": 3.296150967473873, + "learning_rate": 2e-05, + "loss": 0.1978, + "step": 135 + }, + { + "epoch": 0.89171974522293, + "grad_norm": 4.123948829111247, + "learning_rate": 2e-05, + "loss": 0.2154, + "step": 140 + }, + { + "epoch": 0.9235668789808917, + "grad_norm": 5.747312107444856, + "learning_rate": 2e-05, + "loss": 0.1691, + "step": 145 + }, + { + "epoch": 0.9554140127388535, + "grad_norm": 3.922490920704767, + "learning_rate": 2e-05, + "loss": 0.206, + "step": 150 + }, + { + "epoch": 0.9872611464968153, + "grad_norm": 3.76482213645933, + "learning_rate": 2e-05, + "loss": 0.1766, + "step": 155 + } + ], + "logging_steps": 5, + "max_steps": 314, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 157, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 521536536576.0, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_1b_base_5000/checkpoint-157/training_args.bin b/specialized_llm_1b_base_5000/checkpoint-157/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..c4bb2fdcffb9a47186dbb3c4aafe179e9a141d9e --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-157/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0108e4849ad38efb343f9debded1af2f56004a3e3a95f1ec12c3c32c3e0427be +size 8760 diff --git a/specialized_llm_1b_base_5000/checkpoint-157/zero_to_fp32.py b/specialized_llm_1b_base_5000/checkpoint-157/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-157/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_1b_base_5000/checkpoint-314/config.json b/specialized_llm_1b_base_5000/checkpoint-314/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8676da595dfad06b6de4cec45ef3f5e6dec4fca4 --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-314/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-1B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 64, + "hidden_act": "silu", + "hidden_size": 2048, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 32, + "num_hidden_layers": 16, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_1b_base_5000/checkpoint-314/generation_config.json b/specialized_llm_1b_base_5000/checkpoint-314/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-314/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_1b_base_5000/checkpoint-314/latest b/specialized_llm_1b_base_5000/checkpoint-314/latest new file mode 100644 index 0000000000000000000000000000000000000000..a9786513b1a514db2c3a9da7408844635663d55d --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-314/latest @@ -0,0 +1 @@ +global_step314 \ No newline at end of file diff --git a/specialized_llm_1b_base_5000/checkpoint-314/model.safetensors b/specialized_llm_1b_base_5000/checkpoint-314/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..9e8dd586f2e7b1b3929dce71e83cd523376b962d --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-314/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f2b024268457cec0437917c892ab571aec7f0fe6faf2a1db3ddd42420deb608e +size 2471653800 diff --git a/specialized_llm_1b_base_5000/checkpoint-314/rng_state_0.pth b/specialized_llm_1b_base_5000/checkpoint-314/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..d46a9ba7690e83fef48d0cf5f4c34bd9df6cc737 --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-314/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6cb795a5cea0baa625c50007a6c9da09c6bbb5c16b560424070384a479e7d8a6 +size 14512 diff --git a/specialized_llm_1b_base_5000/checkpoint-314/rng_state_1.pth b/specialized_llm_1b_base_5000/checkpoint-314/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..23784d04394ff924f7fca03236f62241ce5f4b6e --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-314/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f19604377bd828eb366c68946ad997a4ff4d69beaeea93ee58915135768ec63 +size 14512 diff --git a/specialized_llm_1b_base_5000/checkpoint-314/scheduler.pt b/specialized_llm_1b_base_5000/checkpoint-314/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..e39d80394b06b5f30dd5d68f240cb914854938ba --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-314/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:81861f3d009fd36f92297f0e1f8859834371892318cd1803dcd46682cde34e17 +size 1064 diff --git a/specialized_llm_1b_base_5000/checkpoint-314/special_tokens_map.json b/specialized_llm_1b_base_5000/checkpoint-314/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-314/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_1b_base_5000/checkpoint-314/tokenizer.json b/specialized_llm_1b_base_5000/checkpoint-314/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-314/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_1b_base_5000/checkpoint-314/tokenizer_config.json b/specialized_llm_1b_base_5000/checkpoint-314/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-314/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_1b_base_5000/checkpoint-314/trainer_state.json b/specialized_llm_1b_base_5000/checkpoint-314/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..bb3da120d8ec16bb7e1f1746648ddf8182c41078 --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-314/trainer_state.json @@ -0,0 +1,467 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 2.0, + "eval_steps": 500, + "global_step": 314, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.03184713375796178, + "grad_norm": 37.66314323037216, + "learning_rate": 2e-05, + "loss": 3.7447, + "step": 5 + }, + { + "epoch": 0.06369426751592357, + "grad_norm": 14.724589278360234, + "learning_rate": 2e-05, + "loss": 1.1615, + "step": 10 + }, + { + "epoch": 0.09554140127388536, + "grad_norm": 13.441210751466988, + "learning_rate": 2e-05, + "loss": 0.8305, + "step": 15 + }, + { + "epoch": 0.12738853503184713, + "grad_norm": 6.8030882091003715, + "learning_rate": 2e-05, + "loss": 0.6265, + "step": 20 + }, + { + "epoch": 0.1592356687898089, + "grad_norm": 8.243623988332963, + "learning_rate": 2e-05, + "loss": 0.5303, + "step": 25 + }, + { + "epoch": 0.1910828025477707, + "grad_norm": 6.3471640294272955, + "learning_rate": 2e-05, + "loss": 0.5258, + "step": 30 + }, + { + "epoch": 0.2229299363057325, + "grad_norm": 7.411888189562901, + "learning_rate": 2e-05, + "loss": 0.4387, + "step": 35 + }, + { + "epoch": 0.25477707006369427, + "grad_norm": 7.782865258374749, + "learning_rate": 2e-05, + "loss": 0.4305, + "step": 40 + }, + { + "epoch": 0.28662420382165604, + "grad_norm": 6.701266336178135, + "learning_rate": 2e-05, + "loss": 0.3431, + "step": 45 + }, + { + "epoch": 0.3184713375796178, + "grad_norm": 4.430021329163281, + "learning_rate": 2e-05, + "loss": 0.2647, + "step": 50 + }, + { + "epoch": 0.3503184713375796, + "grad_norm": 6.4583401741640944, + "learning_rate": 2e-05, + "loss": 0.2896, + "step": 55 + }, + { + "epoch": 0.3821656050955414, + "grad_norm": 6.865477632135474, + "learning_rate": 2e-05, + "loss": 0.2543, + "step": 60 + }, + { + "epoch": 0.4140127388535032, + "grad_norm": 6.196144097493654, + "learning_rate": 2e-05, + "loss": 0.2463, + "step": 65 + }, + { + "epoch": 0.445859872611465, + "grad_norm": 5.10199147383032, + "learning_rate": 2e-05, + "loss": 0.2436, + "step": 70 + }, + { + "epoch": 0.47770700636942676, + "grad_norm": 5.97094810826287, + "learning_rate": 2e-05, + "loss": 0.2613, + "step": 75 + }, + { + "epoch": 0.5095541401273885, + "grad_norm": 4.379695528407616, + "learning_rate": 2e-05, + "loss": 0.2587, + "step": 80 + }, + { + "epoch": 0.5414012738853503, + "grad_norm": 4.248287167178241, + "learning_rate": 2e-05, + "loss": 0.2646, + "step": 85 + }, + { + "epoch": 0.5732484076433121, + "grad_norm": 4.718852658442149, + "learning_rate": 2e-05, + "loss": 0.2607, + "step": 90 + }, + { + "epoch": 0.6050955414012739, + "grad_norm": 4.023176138851368, + "learning_rate": 2e-05, + "loss": 0.2248, + "step": 95 + }, + { + "epoch": 0.6369426751592356, + "grad_norm": 4.454515869310625, + "learning_rate": 2e-05, + "loss": 0.2107, + "step": 100 + }, + { + "epoch": 0.6687898089171974, + "grad_norm": 3.798113311632056, + "learning_rate": 2e-05, + "loss": 0.1919, + "step": 105 + }, + { + "epoch": 0.7006369426751592, + "grad_norm": 4.28120993551294, + "learning_rate": 2e-05, + "loss": 0.2243, + "step": 110 + }, + { + "epoch": 0.732484076433121, + "grad_norm": 3.57043135580374, + "learning_rate": 2e-05, + "loss": 0.2178, + "step": 115 + }, + { + "epoch": 0.7643312101910829, + "grad_norm": 3.646995627774241, + "learning_rate": 2e-05, + "loss": 0.236, + "step": 120 + }, + { + "epoch": 0.7961783439490446, + "grad_norm": 4.465757164365836, + "learning_rate": 2e-05, + "loss": 0.2101, + "step": 125 + }, + { + "epoch": 0.8280254777070064, + "grad_norm": 5.144321152284542, + "learning_rate": 2e-05, + "loss": 0.2051, + "step": 130 + }, + { + "epoch": 0.8598726114649682, + "grad_norm": 3.296150967473873, + "learning_rate": 2e-05, + "loss": 0.1978, + "step": 135 + }, + { + "epoch": 0.89171974522293, + "grad_norm": 4.123948829111247, + "learning_rate": 2e-05, + "loss": 0.2154, + "step": 140 + }, + { + "epoch": 0.9235668789808917, + "grad_norm": 5.747312107444856, + "learning_rate": 2e-05, + "loss": 0.1691, + "step": 145 + }, + { + "epoch": 0.9554140127388535, + "grad_norm": 3.922490920704767, + "learning_rate": 2e-05, + "loss": 0.206, + "step": 150 + }, + { + "epoch": 0.9872611464968153, + "grad_norm": 3.76482213645933, + "learning_rate": 2e-05, + "loss": 0.1766, + "step": 155 + }, + { + "epoch": 1.019108280254777, + "grad_norm": 2.9174510379287546, + "learning_rate": 2e-05, + "loss": 0.1414, + "step": 160 + }, + { + "epoch": 1.0509554140127388, + "grad_norm": 3.032159331326141, + "learning_rate": 2e-05, + "loss": 0.1145, + "step": 165 + }, + { + "epoch": 1.0828025477707006, + "grad_norm": 6.3226625130536425, + "learning_rate": 2e-05, + "loss": 0.134, + "step": 170 + }, + { + "epoch": 1.1146496815286624, + "grad_norm": 3.8893366696552176, + "learning_rate": 2e-05, + "loss": 0.1141, + "step": 175 + }, + { + "epoch": 1.1464968152866242, + "grad_norm": 3.0789450786968557, + "learning_rate": 2e-05, + "loss": 0.1255, + "step": 180 + }, + { + "epoch": 1.178343949044586, + "grad_norm": 3.669344932725046, + "learning_rate": 2e-05, + "loss": 0.1169, + "step": 185 + }, + { + "epoch": 1.2101910828025477, + "grad_norm": 2.9849318931769093, + "learning_rate": 2e-05, + "loss": 0.1147, + "step": 190 + }, + { + "epoch": 1.2420382165605095, + "grad_norm": 3.964040685733728, + "learning_rate": 2e-05, + "loss": 0.1322, + "step": 195 + }, + { + "epoch": 1.2738853503184713, + "grad_norm": 2.782091120453009, + "learning_rate": 2e-05, + "loss": 0.1196, + "step": 200 + }, + { + "epoch": 1.305732484076433, + "grad_norm": 3.2215611398873993, + "learning_rate": 2e-05, + "loss": 0.1323, + "step": 205 + }, + { + "epoch": 1.3375796178343948, + "grad_norm": 2.6614316617973834, + "learning_rate": 2e-05, + "loss": 0.0984, + "step": 210 + }, + { + "epoch": 1.3694267515923566, + "grad_norm": 4.875192277886499, + "learning_rate": 2e-05, + "loss": 0.1027, + "step": 215 + }, + { + "epoch": 1.4012738853503186, + "grad_norm": 3.3841905740676856, + "learning_rate": 2e-05, + "loss": 0.1117, + "step": 220 + }, + { + "epoch": 1.4331210191082802, + "grad_norm": 2.9984081811807055, + "learning_rate": 2e-05, + "loss": 0.1178, + "step": 225 + }, + { + "epoch": 1.4649681528662422, + "grad_norm": 2.814619686959079, + "learning_rate": 2e-05, + "loss": 0.1203, + "step": 230 + }, + { + "epoch": 1.4968152866242037, + "grad_norm": 2.7850431799140827, + "learning_rate": 2e-05, + "loss": 0.1206, + "step": 235 + }, + { + "epoch": 1.5286624203821657, + "grad_norm": 3.208494829485922, + "learning_rate": 2e-05, + "loss": 0.1356, + "step": 240 + }, + { + "epoch": 1.5605095541401273, + "grad_norm": 2.8268851263894583, + "learning_rate": 2e-05, + "loss": 0.1268, + "step": 245 + }, + { + "epoch": 1.5923566878980893, + "grad_norm": 3.0929313392965243, + "learning_rate": 2e-05, + "loss": 0.1398, + "step": 250 + }, + { + "epoch": 1.6242038216560508, + "grad_norm": 3.1345674190337816, + "learning_rate": 2e-05, + "loss": 0.1211, + "step": 255 + }, + { + "epoch": 1.6560509554140128, + "grad_norm": 2.6735873397796985, + "learning_rate": 2e-05, + "loss": 0.1346, + "step": 260 + }, + { + "epoch": 1.6878980891719744, + "grad_norm": 3.587664639012431, + "learning_rate": 2e-05, + "loss": 0.099, + "step": 265 + }, + { + "epoch": 1.7197452229299364, + "grad_norm": 3.926348902580248, + "learning_rate": 2e-05, + "loss": 0.1211, + "step": 270 + }, + { + "epoch": 1.7515923566878981, + "grad_norm": 2.4865258193060877, + "learning_rate": 2e-05, + "loss": 0.1315, + "step": 275 + }, + { + "epoch": 1.78343949044586, + "grad_norm": 4.502482439770098, + "learning_rate": 2e-05, + "loss": 0.1207, + "step": 280 + }, + { + "epoch": 1.8152866242038217, + "grad_norm": 2.4852034099268696, + "learning_rate": 2e-05, + "loss": 0.1158, + "step": 285 + }, + { + "epoch": 1.8471337579617835, + "grad_norm": 3.296320133211838, + "learning_rate": 2e-05, + "loss": 0.1259, + "step": 290 + }, + { + "epoch": 1.8789808917197452, + "grad_norm": 2.709449682065955, + "learning_rate": 2e-05, + "loss": 0.1167, + "step": 295 + }, + { + "epoch": 1.910828025477707, + "grad_norm": 3.0412061183470454, + "learning_rate": 2e-05, + "loss": 0.1209, + "step": 300 + }, + { + "epoch": 1.9426751592356688, + "grad_norm": 2.723855853598374, + "learning_rate": 2e-05, + "loss": 0.1173, + "step": 305 + }, + { + "epoch": 1.9745222929936306, + "grad_norm": 2.3941938320066365, + "learning_rate": 2e-05, + "loss": 0.1094, + "step": 310 + } + ], + "logging_steps": 5, + "max_steps": 314, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 157, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 1043073073152.0, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_1b_base_5000/checkpoint-314/training_args.bin b/specialized_llm_1b_base_5000/checkpoint-314/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..c4bb2fdcffb9a47186dbb3c4aafe179e9a141d9e --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-314/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0108e4849ad38efb343f9debded1af2f56004a3e3a95f1ec12c3c32c3e0427be +size 8760 diff --git a/specialized_llm_1b_base_5000/checkpoint-314/zero_to_fp32.py b/specialized_llm_1b_base_5000/checkpoint-314/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_1b_base_5000/checkpoint-314/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_3b_base_100/checkpoint-100/config.json b/specialized_llm_3b_base_100/checkpoint-100/config.json new file mode 100644 index 0000000000000000000000000000000000000000..3e1d47b9c28f155b84127d51a1458101e38a94da --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-3B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 128, + "hidden_act": "silu", + "hidden_size": 3072, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 24, + "num_hidden_layers": 28, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_3b_base_100/checkpoint-100/generation_config.json b/specialized_llm_3b_base_100/checkpoint-100/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_3b_base_100/checkpoint-100/latest b/specialized_llm_3b_base_100/checkpoint-100/latest new file mode 100644 index 0000000000000000000000000000000000000000..744ae7dbad571b6f37ec6c7066549494261bb59e --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/latest @@ -0,0 +1 @@ +global_step100 \ No newline at end of file diff --git a/specialized_llm_3b_base_100/checkpoint-100/model-00001-of-00002.safetensors b/specialized_llm_3b_base_100/checkpoint-100/model-00001-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..62f4093cbb35f2469d8955e8c017e76a55c9d852 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/model-00001-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3796d4372571a39f996cca939245e1bfbc494340fbac1c9901171d2225a12c1a +size 4965811384 diff --git a/specialized_llm_3b_base_100/checkpoint-100/model-00002-of-00002.safetensors b/specialized_llm_3b_base_100/checkpoint-100/model-00002-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..74e2948190c1fae289fe303f4b345c3d79772476 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/model-00002-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:14fbcf5611e9c97fc68a923504c4ffdb359f56f77c710044093bc13e581b392a +size 1459729952 diff --git a/specialized_llm_3b_base_100/checkpoint-100/model.safetensors.index.json b/specialized_llm_3b_base_100/checkpoint-100/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..60dbbe5a4d1d1eb6b7320f138d25b511a94d3eb4 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/model.safetensors.index.json @@ -0,0 +1,261 @@ +{ + "metadata": { + "total_size": 6425511936 + }, + "weight_map": { + "model.embed_tokens.weight": "model-00001-of-00002.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.norm.weight": "model-00002-of-00002.safetensors" + } +} diff --git a/specialized_llm_3b_base_100/checkpoint-100/rng_state_0.pth b/specialized_llm_3b_base_100/checkpoint-100/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..d46a9ba7690e83fef48d0cf5f4c34bd9df6cc737 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6cb795a5cea0baa625c50007a6c9da09c6bbb5c16b560424070384a479e7d8a6 +size 14512 diff --git a/specialized_llm_3b_base_100/checkpoint-100/rng_state_1.pth b/specialized_llm_3b_base_100/checkpoint-100/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..23784d04394ff924f7fca03236f62241ce5f4b6e --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f19604377bd828eb366c68946ad997a4ff4d69beaeea93ee58915135768ec63 +size 14512 diff --git a/specialized_llm_3b_base_100/checkpoint-100/scheduler.pt b/specialized_llm_3b_base_100/checkpoint-100/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..bf37b0fad796f509f58d2a4d04c6af9fab293fcc --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ea217589f6a52e6e5bf252b883fdc2c5bb872bd2fee80104e01128c8070232c3 +size 1064 diff --git a/specialized_llm_3b_base_100/checkpoint-100/special_tokens_map.json b/specialized_llm_3b_base_100/checkpoint-100/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_3b_base_100/checkpoint-100/tokenizer.json b/specialized_llm_3b_base_100/checkpoint-100/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_3b_base_100/checkpoint-100/tokenizer_config.json b/specialized_llm_3b_base_100/checkpoint-100/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_3b_base_100/checkpoint-100/trainer_state.json b/specialized_llm_3b_base_100/checkpoint-100/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..a62dd037e92de3ebc291d444664c0012f11f2763 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/trainer_state.json @@ -0,0 +1,173 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 2.0, + "eval_steps": 500, + "global_step": 100, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.1, + "grad_norm": 106.77898458866446, + "learning_rate": 2e-05, + "loss": 4.3497, + "step": 5 + }, + { + "epoch": 0.2, + "grad_norm": 66.00344418112326, + "learning_rate": 2e-05, + "loss": 2.1071, + "step": 10 + }, + { + "epoch": 0.3, + "grad_norm": 24.47801090170246, + "learning_rate": 2e-05, + "loss": 1.2534, + "step": 15 + }, + { + "epoch": 0.4, + "grad_norm": 41.229532688153455, + "learning_rate": 2e-05, + "loss": 1.0938, + "step": 20 + }, + { + "epoch": 0.5, + "grad_norm": 11.902940657478696, + "learning_rate": 2e-05, + "loss": 0.9594, + "step": 25 + }, + { + "epoch": 0.6, + "grad_norm": 28.219616702118703, + "learning_rate": 2e-05, + "loss": 0.9492, + "step": 30 + }, + { + "epoch": 0.7, + "grad_norm": 32.81753172055827, + "learning_rate": 2e-05, + "loss": 1.2932, + "step": 35 + }, + { + "epoch": 0.8, + "grad_norm": 30.610065738770047, + "learning_rate": 2e-05, + "loss": 0.843, + "step": 40 + }, + { + "epoch": 0.9, + "grad_norm": 20.57339984308298, + "learning_rate": 2e-05, + "loss": 0.8182, + "step": 45 + }, + { + "epoch": 1.0, + "grad_norm": 23.53252867869031, + "learning_rate": 2e-05, + "loss": 0.8716, + "step": 50 + }, + { + "epoch": 1.1, + "grad_norm": 5.784151143112158, + "learning_rate": 2e-05, + "loss": 0.4699, + "step": 55 + }, + { + "epoch": 1.2, + "grad_norm": 26.263887681864617, + "learning_rate": 2e-05, + "loss": 0.5283, + "step": 60 + }, + { + "epoch": 1.3, + "grad_norm": 29.16789583215782, + "learning_rate": 2e-05, + "loss": 0.6115, + "step": 65 + }, + { + "epoch": 1.4, + "grad_norm": 13.164226604930082, + "learning_rate": 2e-05, + "loss": 0.5061, + "step": 70 + }, + { + "epoch": 1.5, + "grad_norm": 19.29254707784417, + "learning_rate": 2e-05, + "loss": 0.5398, + "step": 75 + }, + { + "epoch": 1.6, + "grad_norm": 30.747810398925257, + "learning_rate": 2e-05, + "loss": 0.3085, + "step": 80 + }, + { + "epoch": 1.7, + "grad_norm": 28.63064114338806, + "learning_rate": 2e-05, + "loss": 0.3141, + "step": 85 + }, + { + "epoch": 1.8, + "grad_norm": 50.645984083741986, + "learning_rate": 2e-05, + "loss": 0.6047, + "step": 90 + }, + { + "epoch": 1.9, + "grad_norm": 9.59426350746597, + "learning_rate": 2e-05, + "loss": 0.2678, + "step": 95 + }, + { + "epoch": 2.0, + "grad_norm": 11.354541311577147, + "learning_rate": 2e-05, + "loss": 0.3438, + "step": 100 + } + ], + "logging_steps": 5, + "max_steps": 100, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 50, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 53791948800.0, + "train_batch_size": 1, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_3b_base_100/checkpoint-100/training_args.bin b/specialized_llm_3b_base_100/checkpoint-100/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..f799b734012cb289c0e8b3b74d6055d49d8fa619 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c1cbdaedb8b6c9b6631511cb7e0892eec294af2cbc6eb5de29e98cd6a3c8309a +size 8760 diff --git a/specialized_llm_3b_base_100/checkpoint-100/zero_to_fp32.py b/specialized_llm_3b_base_100/checkpoint-100/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-100/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_3b_base_100/checkpoint-50/config.json b/specialized_llm_3b_base_100/checkpoint-50/config.json new file mode 100644 index 0000000000000000000000000000000000000000..3e1d47b9c28f155b84127d51a1458101e38a94da --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-3B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 128, + "hidden_act": "silu", + "hidden_size": 3072, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 24, + "num_hidden_layers": 28, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_3b_base_100/checkpoint-50/generation_config.json b/specialized_llm_3b_base_100/checkpoint-50/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_3b_base_100/checkpoint-50/latest b/specialized_llm_3b_base_100/checkpoint-50/latest new file mode 100644 index 0000000000000000000000000000000000000000..9b4dc801e3fb152ef5c0ee60d309c705a9b01564 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/latest @@ -0,0 +1 @@ +global_step50 \ No newline at end of file diff --git a/specialized_llm_3b_base_100/checkpoint-50/model-00001-of-00002.safetensors b/specialized_llm_3b_base_100/checkpoint-50/model-00001-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..4537bf14b0bb96721d72f58309073b0342ae85c8 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/model-00001-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d9f18d3789bf27128ddc14eab66dae3194dbff5c13e9227fb63800354aa2434d +size 4965811384 diff --git a/specialized_llm_3b_base_100/checkpoint-50/model-00002-of-00002.safetensors b/specialized_llm_3b_base_100/checkpoint-50/model-00002-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..e15c50570bbdd3ca67b2782e81fa1f36b3747c58 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/model-00002-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b4616b24c8248ed6f06c2989576061c532ed17c3e3e0a8f4874db27f59b6fc63 +size 1459729952 diff --git a/specialized_llm_3b_base_100/checkpoint-50/model.safetensors.index.json b/specialized_llm_3b_base_100/checkpoint-50/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..60dbbe5a4d1d1eb6b7320f138d25b511a94d3eb4 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/model.safetensors.index.json @@ -0,0 +1,261 @@ +{ + "metadata": { + "total_size": 6425511936 + }, + "weight_map": { + "model.embed_tokens.weight": "model-00001-of-00002.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.norm.weight": "model-00002-of-00002.safetensors" + } +} diff --git a/specialized_llm_3b_base_100/checkpoint-50/rng_state_0.pth b/specialized_llm_3b_base_100/checkpoint-50/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b24ba5257472a7c82c4d4247a4c0210ee74f9e61 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4 +size 14512 diff --git a/specialized_llm_3b_base_100/checkpoint-50/rng_state_1.pth b/specialized_llm_3b_base_100/checkpoint-50/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..9350a8206512bf8b857f4064425716468c2b7465 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6 +size 14512 diff --git a/specialized_llm_3b_base_100/checkpoint-50/scheduler.pt b/specialized_llm_3b_base_100/checkpoint-50/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..194e7ca52a6b7ebba52dda11bde7390f9aa1cc76 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:95ca272310bc0b5867e1ebe7b183b00a4e2513c65c1dbea3410a9a3e527baad9 +size 1064 diff --git a/specialized_llm_3b_base_100/checkpoint-50/special_tokens_map.json b/specialized_llm_3b_base_100/checkpoint-50/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_3b_base_100/checkpoint-50/tokenizer.json b/specialized_llm_3b_base_100/checkpoint-50/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_3b_base_100/checkpoint-50/tokenizer_config.json b/specialized_llm_3b_base_100/checkpoint-50/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_3b_base_100/checkpoint-50/trainer_state.json b/specialized_llm_3b_base_100/checkpoint-50/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..4d6c2ee0633e19bc4ab09bfb4d48c2fa29539b5e --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/trainer_state.json @@ -0,0 +1,103 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 50, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.1, + "grad_norm": 106.77898458866446, + "learning_rate": 2e-05, + "loss": 4.3497, + "step": 5 + }, + { + "epoch": 0.2, + "grad_norm": 66.00344418112326, + "learning_rate": 2e-05, + "loss": 2.1071, + "step": 10 + }, + { + "epoch": 0.3, + "grad_norm": 24.47801090170246, + "learning_rate": 2e-05, + "loss": 1.2534, + "step": 15 + }, + { + "epoch": 0.4, + "grad_norm": 41.229532688153455, + "learning_rate": 2e-05, + "loss": 1.0938, + "step": 20 + }, + { + "epoch": 0.5, + "grad_norm": 11.902940657478696, + "learning_rate": 2e-05, + "loss": 0.9594, + "step": 25 + }, + { + "epoch": 0.6, + "grad_norm": 28.219616702118703, + "learning_rate": 2e-05, + "loss": 0.9492, + "step": 30 + }, + { + "epoch": 0.7, + "grad_norm": 32.81753172055827, + "learning_rate": 2e-05, + "loss": 1.2932, + "step": 35 + }, + { + "epoch": 0.8, + "grad_norm": 30.610065738770047, + "learning_rate": 2e-05, + "loss": 0.843, + "step": 40 + }, + { + "epoch": 0.9, + "grad_norm": 20.57339984308298, + "learning_rate": 2e-05, + "loss": 0.8182, + "step": 45 + }, + { + "epoch": 1.0, + "grad_norm": 23.53252867869031, + "learning_rate": 2e-05, + "loss": 0.8716, + "step": 50 + } + ], + "logging_steps": 5, + "max_steps": 100, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 50, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 26895974400.0, + "train_batch_size": 1, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_3b_base_100/checkpoint-50/training_args.bin b/specialized_llm_3b_base_100/checkpoint-50/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..f799b734012cb289c0e8b3b74d6055d49d8fa619 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c1cbdaedb8b6c9b6631511cb7e0892eec294af2cbc6eb5de29e98cd6a3c8309a +size 8760 diff --git a/specialized_llm_3b_base_100/checkpoint-50/zero_to_fp32.py b/specialized_llm_3b_base_100/checkpoint-50/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_3b_base_100/checkpoint-50/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_3b_base_10000/checkpoint-313/config.json b/specialized_llm_3b_base_10000/checkpoint-313/config.json new file mode 100644 index 0000000000000000000000000000000000000000..3e1d47b9c28f155b84127d51a1458101e38a94da --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-3B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 128, + "hidden_act": "silu", + "hidden_size": 3072, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 24, + "num_hidden_layers": 28, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_3b_base_10000/checkpoint-313/generation_config.json b/specialized_llm_3b_base_10000/checkpoint-313/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_3b_base_10000/checkpoint-313/latest b/specialized_llm_3b_base_10000/checkpoint-313/latest new file mode 100644 index 0000000000000000000000000000000000000000..47fb2084a807bccd66224156e4de1d508c72fa85 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/latest @@ -0,0 +1 @@ +global_step313 \ No newline at end of file diff --git a/specialized_llm_3b_base_10000/checkpoint-313/model-00001-of-00002.safetensors b/specialized_llm_3b_base_10000/checkpoint-313/model-00001-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..5fa985428ee6fbfa0152d9942d8414d9b71b50d9 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/model-00001-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f8950c50db2a8bdd3a2468ec0346eccb23362058ba45db1763ed9a9abc9356e8 +size 4965811384 diff --git a/specialized_llm_3b_base_10000/checkpoint-313/model-00002-of-00002.safetensors b/specialized_llm_3b_base_10000/checkpoint-313/model-00002-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..75d33e4db09552c970c1e05a1a9d04081efe9021 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/model-00002-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0befc841be979e1a43b1b012275f8df05698b56efb7ba489d14897676ec11a1d +size 1459729952 diff --git a/specialized_llm_3b_base_10000/checkpoint-313/model.safetensors.index.json b/specialized_llm_3b_base_10000/checkpoint-313/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..60dbbe5a4d1d1eb6b7320f138d25b511a94d3eb4 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/model.safetensors.index.json @@ -0,0 +1,261 @@ +{ + "metadata": { + "total_size": 6425511936 + }, + "weight_map": { + "model.embed_tokens.weight": "model-00001-of-00002.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.norm.weight": "model-00002-of-00002.safetensors" + } +} diff --git a/specialized_llm_3b_base_10000/checkpoint-313/rng_state_0.pth b/specialized_llm_3b_base_10000/checkpoint-313/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b24ba5257472a7c82c4d4247a4c0210ee74f9e61 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4 +size 14512 diff --git a/specialized_llm_3b_base_10000/checkpoint-313/rng_state_1.pth b/specialized_llm_3b_base_10000/checkpoint-313/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..9350a8206512bf8b857f4064425716468c2b7465 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6 +size 14512 diff --git a/specialized_llm_3b_base_10000/checkpoint-313/scheduler.pt b/specialized_llm_3b_base_10000/checkpoint-313/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..805c667453687561950b7246de69b578f5234b93 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:78107e860b307640f86e719092e76971135f46f006519249d985e44f93d18407 +size 1064 diff --git a/specialized_llm_3b_base_10000/checkpoint-313/special_tokens_map.json b/specialized_llm_3b_base_10000/checkpoint-313/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_3b_base_10000/checkpoint-313/tokenizer.json b/specialized_llm_3b_base_10000/checkpoint-313/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_3b_base_10000/checkpoint-313/tokenizer_config.json b/specialized_llm_3b_base_10000/checkpoint-313/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_3b_base_10000/checkpoint-313/trainer_state.json b/specialized_llm_3b_base_10000/checkpoint-313/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..1c3f228927689a972a35a0f0c2dca4e93c0adcf5 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/trainer_state.json @@ -0,0 +1,467 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 313, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.01597444089456869, + "grad_norm": 83.71863294460064, + "learning_rate": 2e-05, + "loss": 3.3466, + "step": 5 + }, + { + "epoch": 0.03194888178913738, + "grad_norm": 8.309768229761245, + "learning_rate": 2e-05, + "loss": 1.5926, + "step": 10 + }, + { + "epoch": 0.04792332268370607, + "grad_norm": 5.5501283977443014, + "learning_rate": 2e-05, + "loss": 0.9672, + "step": 15 + }, + { + "epoch": 0.06389776357827476, + "grad_norm": 7.968011212878682, + "learning_rate": 2e-05, + "loss": 0.8781, + "step": 20 + }, + { + "epoch": 0.07987220447284345, + "grad_norm": 5.773155689191023, + "learning_rate": 2e-05, + "loss": 0.7334, + "step": 25 + }, + { + "epoch": 0.09584664536741214, + "grad_norm": 12.419688553572414, + "learning_rate": 2e-05, + "loss": 0.587, + "step": 30 + }, + { + "epoch": 0.11182108626198083, + "grad_norm": 5.2316684575507475, + "learning_rate": 2e-05, + "loss": 0.415, + "step": 35 + }, + { + "epoch": 0.12779552715654952, + "grad_norm": 5.527971827359797, + "learning_rate": 2e-05, + "loss": 0.3943, + "step": 40 + }, + { + "epoch": 0.14376996805111822, + "grad_norm": 3.888479455006538, + "learning_rate": 2e-05, + "loss": 0.3001, + "step": 45 + }, + { + "epoch": 0.1597444089456869, + "grad_norm": 3.565885610442197, + "learning_rate": 2e-05, + "loss": 0.3127, + "step": 50 + }, + { + "epoch": 0.1757188498402556, + "grad_norm": 3.8283750979248086, + "learning_rate": 2e-05, + "loss": 0.2748, + "step": 55 + }, + { + "epoch": 0.19169329073482427, + "grad_norm": 3.959745580093837, + "learning_rate": 2e-05, + "loss": 0.294, + "step": 60 + }, + { + "epoch": 0.20766773162939298, + "grad_norm": 3.427782759656506, + "learning_rate": 2e-05, + "loss": 0.2843, + "step": 65 + }, + { + "epoch": 0.22364217252396165, + "grad_norm": 3.54917757478626, + "learning_rate": 2e-05, + "loss": 0.2709, + "step": 70 + }, + { + "epoch": 0.23961661341853036, + "grad_norm": 3.998859283435439, + "learning_rate": 2e-05, + "loss": 0.2334, + "step": 75 + }, + { + "epoch": 0.25559105431309903, + "grad_norm": 2.9777041483361493, + "learning_rate": 2e-05, + "loss": 0.2673, + "step": 80 + }, + { + "epoch": 0.2715654952076677, + "grad_norm": 3.1903834947337333, + "learning_rate": 2e-05, + "loss": 0.2615, + "step": 85 + }, + { + "epoch": 0.28753993610223644, + "grad_norm": 3.4532885387117593, + "learning_rate": 2e-05, + "loss": 0.237, + "step": 90 + }, + { + "epoch": 0.3035143769968051, + "grad_norm": 3.848662534075994, + "learning_rate": 2e-05, + "loss": 0.2765, + "step": 95 + }, + { + "epoch": 0.3194888178913738, + "grad_norm": 2.592443413879922, + "learning_rate": 2e-05, + "loss": 0.2807, + "step": 100 + }, + { + "epoch": 0.3354632587859425, + "grad_norm": 3.213168469956371, + "learning_rate": 2e-05, + "loss": 0.2456, + "step": 105 + }, + { + "epoch": 0.3514376996805112, + "grad_norm": 3.074169636941117, + "learning_rate": 2e-05, + "loss": 0.2503, + "step": 110 + }, + { + "epoch": 0.36741214057507987, + "grad_norm": 2.417392170818873, + "learning_rate": 2e-05, + "loss": 0.2495, + "step": 115 + }, + { + "epoch": 0.38338658146964855, + "grad_norm": 3.114022999875041, + "learning_rate": 2e-05, + "loss": 0.2283, + "step": 120 + }, + { + "epoch": 0.3993610223642173, + "grad_norm": 3.5346691978020033, + "learning_rate": 2e-05, + "loss": 0.2487, + "step": 125 + }, + { + "epoch": 0.41533546325878595, + "grad_norm": 2.8874485043167324, + "learning_rate": 2e-05, + "loss": 0.2314, + "step": 130 + }, + { + "epoch": 0.43130990415335463, + "grad_norm": 2.6236532586559655, + "learning_rate": 2e-05, + "loss": 0.2366, + "step": 135 + }, + { + "epoch": 0.4472843450479233, + "grad_norm": 4.123647817876358, + "learning_rate": 2e-05, + "loss": 0.2323, + "step": 140 + }, + { + "epoch": 0.46325878594249204, + "grad_norm": 3.017220393678832, + "learning_rate": 2e-05, + "loss": 0.2676, + "step": 145 + }, + { + "epoch": 0.4792332268370607, + "grad_norm": 3.5417915594547313, + "learning_rate": 2e-05, + "loss": 0.209, + "step": 150 + }, + { + "epoch": 0.4952076677316294, + "grad_norm": 2.7257738584133846, + "learning_rate": 2e-05, + "loss": 0.2327, + "step": 155 + }, + { + "epoch": 0.5111821086261981, + "grad_norm": 3.744319886800019, + "learning_rate": 2e-05, + "loss": 0.2752, + "step": 160 + }, + { + "epoch": 0.5271565495207667, + "grad_norm": 3.708460813306105, + "learning_rate": 2e-05, + "loss": 0.2473, + "step": 165 + }, + { + "epoch": 0.5431309904153354, + "grad_norm": 2.629137546032223, + "learning_rate": 2e-05, + "loss": 0.207, + "step": 170 + }, + { + "epoch": 0.5591054313099042, + "grad_norm": 2.5819587327031304, + "learning_rate": 2e-05, + "loss": 0.2123, + "step": 175 + }, + { + "epoch": 0.5750798722044729, + "grad_norm": 2.2655265122275843, + "learning_rate": 2e-05, + "loss": 0.191, + "step": 180 + }, + { + "epoch": 0.5910543130990416, + "grad_norm": 2.6804526214625497, + "learning_rate": 2e-05, + "loss": 0.2336, + "step": 185 + }, + { + "epoch": 0.6070287539936102, + "grad_norm": 3.2628819241122047, + "learning_rate": 2e-05, + "loss": 0.2293, + "step": 190 + }, + { + "epoch": 0.6230031948881789, + "grad_norm": 2.3619065168507727, + "learning_rate": 2e-05, + "loss": 0.2346, + "step": 195 + }, + { + "epoch": 0.6389776357827476, + "grad_norm": 2.6055177798386575, + "learning_rate": 2e-05, + "loss": 0.2297, + "step": 200 + }, + { + "epoch": 0.6549520766773163, + "grad_norm": 2.279009387467159, + "learning_rate": 2e-05, + "loss": 0.2059, + "step": 205 + }, + { + "epoch": 0.670926517571885, + "grad_norm": 2.2868092833043203, + "learning_rate": 2e-05, + "loss": 0.2041, + "step": 210 + }, + { + "epoch": 0.6869009584664537, + "grad_norm": 2.2145027994683835, + "learning_rate": 2e-05, + "loss": 0.1944, + "step": 215 + }, + { + "epoch": 0.7028753993610224, + "grad_norm": 2.7534202573670945, + "learning_rate": 2e-05, + "loss": 0.2254, + "step": 220 + }, + { + "epoch": 0.7188498402555911, + "grad_norm": 2.8212765347556243, + "learning_rate": 2e-05, + "loss": 0.2314, + "step": 225 + }, + { + "epoch": 0.7348242811501597, + "grad_norm": 3.041623121354941, + "learning_rate": 2e-05, + "loss": 0.1936, + "step": 230 + }, + { + "epoch": 0.7507987220447284, + "grad_norm": 2.5503401281825444, + "learning_rate": 2e-05, + "loss": 0.2034, + "step": 235 + }, + { + "epoch": 0.7667731629392971, + "grad_norm": 1.4590655767845273, + "learning_rate": 2e-05, + "loss": 0.1889, + "step": 240 + }, + { + "epoch": 0.7827476038338658, + "grad_norm": 2.0684938511926743, + "learning_rate": 2e-05, + "loss": 0.2074, + "step": 245 + }, + { + "epoch": 0.7987220447284346, + "grad_norm": 2.2882466114625215, + "learning_rate": 2e-05, + "loss": 0.1831, + "step": 250 + }, + { + "epoch": 0.8146964856230032, + "grad_norm": 1.9988547836999553, + "learning_rate": 2e-05, + "loss": 0.1839, + "step": 255 + }, + { + "epoch": 0.8306709265175719, + "grad_norm": 3.0907590290493734, + "learning_rate": 2e-05, + "loss": 0.1845, + "step": 260 + }, + { + "epoch": 0.8466453674121406, + "grad_norm": 2.1647755741271673, + "learning_rate": 2e-05, + "loss": 0.2048, + "step": 265 + }, + { + "epoch": 0.8626198083067093, + "grad_norm": 2.6824247155851855, + "learning_rate": 2e-05, + "loss": 0.1982, + "step": 270 + }, + { + "epoch": 0.8785942492012779, + "grad_norm": 3.5383743017319724, + "learning_rate": 2e-05, + "loss": 0.181, + "step": 275 + }, + { + "epoch": 0.8945686900958466, + "grad_norm": 2.8311929588357314, + "learning_rate": 2e-05, + "loss": 0.1947, + "step": 280 + }, + { + "epoch": 0.9105431309904153, + "grad_norm": 1.9233735249140267, + "learning_rate": 2e-05, + "loss": 0.1908, + "step": 285 + }, + { + "epoch": 0.9265175718849841, + "grad_norm": 2.5582302790137716, + "learning_rate": 2e-05, + "loss": 0.1843, + "step": 290 + }, + { + "epoch": 0.9424920127795527, + "grad_norm": 2.815385399078734, + "learning_rate": 2e-05, + "loss": 0.2073, + "step": 295 + }, + { + "epoch": 0.9584664536741214, + "grad_norm": 2.0523335977866792, + "learning_rate": 2e-05, + "loss": 0.2093, + "step": 300 + }, + { + "epoch": 0.9744408945686901, + "grad_norm": 2.4835341876106254, + "learning_rate": 2e-05, + "loss": 0.1911, + "step": 305 + }, + { + "epoch": 0.9904153354632588, + "grad_norm": 1.89871874035203, + "learning_rate": 2e-05, + "loss": 0.1944, + "step": 310 + } + ], + "logging_steps": 5, + "max_steps": 626, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 313, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 2693900795904.0, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_3b_base_10000/checkpoint-313/training_args.bin b/specialized_llm_3b_base_10000/checkpoint-313/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..ae88350b68635c9a3134f93e2db7c888be2095f1 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:881b520911ba8485e47473e30c27d524bc5ae00678a7fa50397d269c168f0a53 +size 8760 diff --git a/specialized_llm_3b_base_10000/checkpoint-313/zero_to_fp32.py b/specialized_llm_3b_base_10000/checkpoint-313/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-313/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_3b_base_10000/checkpoint-626/config.json b/specialized_llm_3b_base_10000/checkpoint-626/config.json new file mode 100644 index 0000000000000000000000000000000000000000..3e1d47b9c28f155b84127d51a1458101e38a94da --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-3B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 128, + "hidden_act": "silu", + "hidden_size": 3072, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 24, + "num_hidden_layers": 28, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_3b_base_10000/checkpoint-626/generation_config.json b/specialized_llm_3b_base_10000/checkpoint-626/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_3b_base_10000/checkpoint-626/latest b/specialized_llm_3b_base_10000/checkpoint-626/latest new file mode 100644 index 0000000000000000000000000000000000000000..d80594736a8159c5c9880759a7899a9635a45fa4 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/latest @@ -0,0 +1 @@ +global_step626 \ No newline at end of file diff --git a/specialized_llm_3b_base_10000/checkpoint-626/model-00001-of-00002.safetensors b/specialized_llm_3b_base_10000/checkpoint-626/model-00001-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..68413359cb4747d504475032b676c6b885d46a47 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/model-00001-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1eb6dcf1e13be535362856857e1f2767c9b3f4fe6252810f8f39f813b2badae6 +size 4965811384 diff --git a/specialized_llm_3b_base_10000/checkpoint-626/model-00002-of-00002.safetensors b/specialized_llm_3b_base_10000/checkpoint-626/model-00002-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..02f27ed21a50772a8b04e53b036a5682bc9fb37a --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/model-00002-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1650f6a672b0bec40e164e47ac4f3c7363a4a5a9152ee2bb1b86758cdabef3ec +size 1459729952 diff --git a/specialized_llm_3b_base_10000/checkpoint-626/model.safetensors.index.json b/specialized_llm_3b_base_10000/checkpoint-626/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..60dbbe5a4d1d1eb6b7320f138d25b511a94d3eb4 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/model.safetensors.index.json @@ -0,0 +1,261 @@ +{ + "metadata": { + "total_size": 6425511936 + }, + "weight_map": { + "model.embed_tokens.weight": "model-00001-of-00002.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.norm.weight": "model-00002-of-00002.safetensors" + } +} diff --git a/specialized_llm_3b_base_10000/checkpoint-626/rng_state_0.pth b/specialized_llm_3b_base_10000/checkpoint-626/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..d46a9ba7690e83fef48d0cf5f4c34bd9df6cc737 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6cb795a5cea0baa625c50007a6c9da09c6bbb5c16b560424070384a479e7d8a6 +size 14512 diff --git a/specialized_llm_3b_base_10000/checkpoint-626/rng_state_1.pth b/specialized_llm_3b_base_10000/checkpoint-626/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..23784d04394ff924f7fca03236f62241ce5f4b6e --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f19604377bd828eb366c68946ad997a4ff4d69beaeea93ee58915135768ec63 +size 14512 diff --git a/specialized_llm_3b_base_10000/checkpoint-626/scheduler.pt b/specialized_llm_3b_base_10000/checkpoint-626/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..716663ab093ea3d8f15565da71b6ae8a62a873a7 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:28479851fef09f93747e85a38a3575655ca7ff2ad46f7dd5d0f2cbe0638cef0c +size 1064 diff --git a/specialized_llm_3b_base_10000/checkpoint-626/special_tokens_map.json b/specialized_llm_3b_base_10000/checkpoint-626/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_3b_base_10000/checkpoint-626/tokenizer.json b/specialized_llm_3b_base_10000/checkpoint-626/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_3b_base_10000/checkpoint-626/tokenizer_config.json b/specialized_llm_3b_base_10000/checkpoint-626/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_3b_base_10000/checkpoint-626/trainer_state.json b/specialized_llm_3b_base_10000/checkpoint-626/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..b16792807f3a8590b88ca407066dffffbe519d00 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/trainer_state.json @@ -0,0 +1,908 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 2.0, + "eval_steps": 500, + "global_step": 626, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.01597444089456869, + "grad_norm": 83.71863294460064, + "learning_rate": 2e-05, + "loss": 3.3466, + "step": 5 + }, + { + "epoch": 0.03194888178913738, + "grad_norm": 8.309768229761245, + "learning_rate": 2e-05, + "loss": 1.5926, + "step": 10 + }, + { + "epoch": 0.04792332268370607, + "grad_norm": 5.5501283977443014, + "learning_rate": 2e-05, + "loss": 0.9672, + "step": 15 + }, + { + "epoch": 0.06389776357827476, + "grad_norm": 7.968011212878682, + "learning_rate": 2e-05, + "loss": 0.8781, + "step": 20 + }, + { + "epoch": 0.07987220447284345, + "grad_norm": 5.773155689191023, + "learning_rate": 2e-05, + "loss": 0.7334, + "step": 25 + }, + { + "epoch": 0.09584664536741214, + "grad_norm": 12.419688553572414, + "learning_rate": 2e-05, + "loss": 0.587, + "step": 30 + }, + { + "epoch": 0.11182108626198083, + "grad_norm": 5.2316684575507475, + "learning_rate": 2e-05, + "loss": 0.415, + "step": 35 + }, + { + "epoch": 0.12779552715654952, + "grad_norm": 5.527971827359797, + "learning_rate": 2e-05, + "loss": 0.3943, + "step": 40 + }, + { + "epoch": 0.14376996805111822, + "grad_norm": 3.888479455006538, + "learning_rate": 2e-05, + "loss": 0.3001, + "step": 45 + }, + { + "epoch": 0.1597444089456869, + "grad_norm": 3.565885610442197, + "learning_rate": 2e-05, + "loss": 0.3127, + "step": 50 + }, + { + "epoch": 0.1757188498402556, + "grad_norm": 3.8283750979248086, + "learning_rate": 2e-05, + "loss": 0.2748, + "step": 55 + }, + { + "epoch": 0.19169329073482427, + "grad_norm": 3.959745580093837, + "learning_rate": 2e-05, + "loss": 0.294, + "step": 60 + }, + { + "epoch": 0.20766773162939298, + "grad_norm": 3.427782759656506, + "learning_rate": 2e-05, + "loss": 0.2843, + "step": 65 + }, + { + "epoch": 0.22364217252396165, + "grad_norm": 3.54917757478626, + "learning_rate": 2e-05, + "loss": 0.2709, + "step": 70 + }, + { + "epoch": 0.23961661341853036, + "grad_norm": 3.998859283435439, + "learning_rate": 2e-05, + "loss": 0.2334, + "step": 75 + }, + { + "epoch": 0.25559105431309903, + "grad_norm": 2.9777041483361493, + "learning_rate": 2e-05, + "loss": 0.2673, + "step": 80 + }, + { + "epoch": 0.2715654952076677, + "grad_norm": 3.1903834947337333, + "learning_rate": 2e-05, + "loss": 0.2615, + "step": 85 + }, + { + "epoch": 0.28753993610223644, + "grad_norm": 3.4532885387117593, + "learning_rate": 2e-05, + "loss": 0.237, + "step": 90 + }, + { + "epoch": 0.3035143769968051, + "grad_norm": 3.848662534075994, + "learning_rate": 2e-05, + "loss": 0.2765, + "step": 95 + }, + { + "epoch": 0.3194888178913738, + "grad_norm": 2.592443413879922, + "learning_rate": 2e-05, + "loss": 0.2807, + "step": 100 + }, + { + "epoch": 0.3354632587859425, + "grad_norm": 3.213168469956371, + "learning_rate": 2e-05, + "loss": 0.2456, + "step": 105 + }, + { + "epoch": 0.3514376996805112, + "grad_norm": 3.074169636941117, + "learning_rate": 2e-05, + "loss": 0.2503, + "step": 110 + }, + { + "epoch": 0.36741214057507987, + "grad_norm": 2.417392170818873, + "learning_rate": 2e-05, + "loss": 0.2495, + "step": 115 + }, + { + "epoch": 0.38338658146964855, + "grad_norm": 3.114022999875041, + "learning_rate": 2e-05, + "loss": 0.2283, + "step": 120 + }, + { + "epoch": 0.3993610223642173, + "grad_norm": 3.5346691978020033, + "learning_rate": 2e-05, + "loss": 0.2487, + "step": 125 + }, + { + "epoch": 0.41533546325878595, + "grad_norm": 2.8874485043167324, + "learning_rate": 2e-05, + "loss": 0.2314, + "step": 130 + }, + { + "epoch": 0.43130990415335463, + "grad_norm": 2.6236532586559655, + "learning_rate": 2e-05, + "loss": 0.2366, + "step": 135 + }, + { + "epoch": 0.4472843450479233, + "grad_norm": 4.123647817876358, + "learning_rate": 2e-05, + "loss": 0.2323, + "step": 140 + }, + { + "epoch": 0.46325878594249204, + "grad_norm": 3.017220393678832, + "learning_rate": 2e-05, + "loss": 0.2676, + "step": 145 + }, + { + "epoch": 0.4792332268370607, + "grad_norm": 3.5417915594547313, + "learning_rate": 2e-05, + "loss": 0.209, + "step": 150 + }, + { + "epoch": 0.4952076677316294, + "grad_norm": 2.7257738584133846, + "learning_rate": 2e-05, + "loss": 0.2327, + "step": 155 + }, + { + "epoch": 0.5111821086261981, + "grad_norm": 3.744319886800019, + "learning_rate": 2e-05, + "loss": 0.2752, + "step": 160 + }, + { + "epoch": 0.5271565495207667, + "grad_norm": 3.708460813306105, + "learning_rate": 2e-05, + "loss": 0.2473, + "step": 165 + }, + { + "epoch": 0.5431309904153354, + "grad_norm": 2.629137546032223, + "learning_rate": 2e-05, + "loss": 0.207, + "step": 170 + }, + { + "epoch": 0.5591054313099042, + "grad_norm": 2.5819587327031304, + "learning_rate": 2e-05, + "loss": 0.2123, + "step": 175 + }, + { + "epoch": 0.5750798722044729, + "grad_norm": 2.2655265122275843, + "learning_rate": 2e-05, + "loss": 0.191, + "step": 180 + }, + { + "epoch": 0.5910543130990416, + "grad_norm": 2.6804526214625497, + "learning_rate": 2e-05, + "loss": 0.2336, + "step": 185 + }, + { + "epoch": 0.6070287539936102, + "grad_norm": 3.2628819241122047, + "learning_rate": 2e-05, + "loss": 0.2293, + "step": 190 + }, + { + "epoch": 0.6230031948881789, + "grad_norm": 2.3619065168507727, + "learning_rate": 2e-05, + "loss": 0.2346, + "step": 195 + }, + { + "epoch": 0.6389776357827476, + "grad_norm": 2.6055177798386575, + "learning_rate": 2e-05, + "loss": 0.2297, + "step": 200 + }, + { + "epoch": 0.6549520766773163, + "grad_norm": 2.279009387467159, + "learning_rate": 2e-05, + "loss": 0.2059, + "step": 205 + }, + { + "epoch": 0.670926517571885, + "grad_norm": 2.2868092833043203, + "learning_rate": 2e-05, + "loss": 0.2041, + "step": 210 + }, + { + "epoch": 0.6869009584664537, + "grad_norm": 2.2145027994683835, + "learning_rate": 2e-05, + "loss": 0.1944, + "step": 215 + }, + { + "epoch": 0.7028753993610224, + "grad_norm": 2.7534202573670945, + "learning_rate": 2e-05, + "loss": 0.2254, + "step": 220 + }, + { + "epoch": 0.7188498402555911, + "grad_norm": 2.8212765347556243, + "learning_rate": 2e-05, + "loss": 0.2314, + "step": 225 + }, + { + "epoch": 0.7348242811501597, + "grad_norm": 3.041623121354941, + "learning_rate": 2e-05, + "loss": 0.1936, + "step": 230 + }, + { + "epoch": 0.7507987220447284, + "grad_norm": 2.5503401281825444, + "learning_rate": 2e-05, + "loss": 0.2034, + "step": 235 + }, + { + "epoch": 0.7667731629392971, + "grad_norm": 1.4590655767845273, + "learning_rate": 2e-05, + "loss": 0.1889, + "step": 240 + }, + { + "epoch": 0.7827476038338658, + "grad_norm": 2.0684938511926743, + "learning_rate": 2e-05, + "loss": 0.2074, + "step": 245 + }, + { + "epoch": 0.7987220447284346, + "grad_norm": 2.2882466114625215, + "learning_rate": 2e-05, + "loss": 0.1831, + "step": 250 + }, + { + "epoch": 0.8146964856230032, + "grad_norm": 1.9988547836999553, + "learning_rate": 2e-05, + "loss": 0.1839, + "step": 255 + }, + { + "epoch": 0.8306709265175719, + "grad_norm": 3.0907590290493734, + "learning_rate": 2e-05, + "loss": 0.1845, + "step": 260 + }, + { + "epoch": 0.8466453674121406, + "grad_norm": 2.1647755741271673, + "learning_rate": 2e-05, + "loss": 0.2048, + "step": 265 + }, + { + "epoch": 0.8626198083067093, + "grad_norm": 2.6824247155851855, + "learning_rate": 2e-05, + "loss": 0.1982, + "step": 270 + }, + { + "epoch": 0.8785942492012779, + "grad_norm": 3.5383743017319724, + "learning_rate": 2e-05, + "loss": 0.181, + "step": 275 + }, + { + "epoch": 0.8945686900958466, + "grad_norm": 2.8311929588357314, + "learning_rate": 2e-05, + "loss": 0.1947, + "step": 280 + }, + { + "epoch": 0.9105431309904153, + "grad_norm": 1.9233735249140267, + "learning_rate": 2e-05, + "loss": 0.1908, + "step": 285 + }, + { + "epoch": 0.9265175718849841, + "grad_norm": 2.5582302790137716, + "learning_rate": 2e-05, + "loss": 0.1843, + "step": 290 + }, + { + "epoch": 0.9424920127795527, + "grad_norm": 2.815385399078734, + "learning_rate": 2e-05, + "loss": 0.2073, + "step": 295 + }, + { + "epoch": 0.9584664536741214, + "grad_norm": 2.0523335977866792, + "learning_rate": 2e-05, + "loss": 0.2093, + "step": 300 + }, + { + "epoch": 0.9744408945686901, + "grad_norm": 2.4835341876106254, + "learning_rate": 2e-05, + "loss": 0.1911, + "step": 305 + }, + { + "epoch": 0.9904153354632588, + "grad_norm": 1.89871874035203, + "learning_rate": 2e-05, + "loss": 0.1944, + "step": 310 + }, + { + "epoch": 1.0063897763578276, + "grad_norm": 1.9465093494946675, + "learning_rate": 2e-05, + "loss": 0.1646, + "step": 315 + }, + { + "epoch": 1.0223642172523961, + "grad_norm": 2.1130020505391043, + "learning_rate": 2e-05, + "loss": 0.1165, + "step": 320 + }, + { + "epoch": 1.038338658146965, + "grad_norm": 2.4497863262645465, + "learning_rate": 2e-05, + "loss": 0.1286, + "step": 325 + }, + { + "epoch": 1.0543130990415335, + "grad_norm": 1.9251221087363877, + "learning_rate": 2e-05, + "loss": 0.1316, + "step": 330 + }, + { + "epoch": 1.0702875399361023, + "grad_norm": 3.163156158004402, + "learning_rate": 2e-05, + "loss": 0.1391, + "step": 335 + }, + { + "epoch": 1.0862619808306708, + "grad_norm": 1.5544243471103054, + "learning_rate": 2e-05, + "loss": 0.1378, + "step": 340 + }, + { + "epoch": 1.1022364217252396, + "grad_norm": 1.8300180739910277, + "learning_rate": 2e-05, + "loss": 0.1426, + "step": 345 + }, + { + "epoch": 1.1182108626198084, + "grad_norm": 4.267862119310627, + "learning_rate": 2e-05, + "loss": 0.123, + "step": 350 + }, + { + "epoch": 1.134185303514377, + "grad_norm": 2.2304810600659177, + "learning_rate": 2e-05, + "loss": 0.1651, + "step": 355 + }, + { + "epoch": 1.1501597444089458, + "grad_norm": 2.394550559267119, + "learning_rate": 2e-05, + "loss": 0.1358, + "step": 360 + }, + { + "epoch": 1.1661341853035143, + "grad_norm": 1.7829450423345041, + "learning_rate": 2e-05, + "loss": 0.1273, + "step": 365 + }, + { + "epoch": 1.182108626198083, + "grad_norm": 1.9929178446730769, + "learning_rate": 2e-05, + "loss": 0.1246, + "step": 370 + }, + { + "epoch": 1.1980830670926517, + "grad_norm": 1.4920997161721226, + "learning_rate": 2e-05, + "loss": 0.1054, + "step": 375 + }, + { + "epoch": 1.2140575079872205, + "grad_norm": 1.7830235203378444, + "learning_rate": 2e-05, + "loss": 0.1528, + "step": 380 + }, + { + "epoch": 1.230031948881789, + "grad_norm": 2.2933280737888757, + "learning_rate": 2e-05, + "loss": 0.1447, + "step": 385 + }, + { + "epoch": 1.2460063897763578, + "grad_norm": 2.030948890904391, + "learning_rate": 2e-05, + "loss": 0.1188, + "step": 390 + }, + { + "epoch": 1.2619808306709266, + "grad_norm": 1.3988993353239416, + "learning_rate": 2e-05, + "loss": 0.1255, + "step": 395 + }, + { + "epoch": 1.2779552715654952, + "grad_norm": 2.063734911750646, + "learning_rate": 2e-05, + "loss": 0.1329, + "step": 400 + }, + { + "epoch": 1.293929712460064, + "grad_norm": 1.5683211620886752, + "learning_rate": 2e-05, + "loss": 0.1503, + "step": 405 + }, + { + "epoch": 1.3099041533546325, + "grad_norm": 1.1469844339610817, + "learning_rate": 2e-05, + "loss": 0.1243, + "step": 410 + }, + { + "epoch": 1.3258785942492013, + "grad_norm": 1.914347504796738, + "learning_rate": 2e-05, + "loss": 0.1412, + "step": 415 + }, + { + "epoch": 1.34185303514377, + "grad_norm": 1.408459123943724, + "learning_rate": 2e-05, + "loss": 0.1192, + "step": 420 + }, + { + "epoch": 1.3578274760383386, + "grad_norm": 2.5298092191552675, + "learning_rate": 2e-05, + "loss": 0.1254, + "step": 425 + }, + { + "epoch": 1.3738019169329074, + "grad_norm": 2.863611554543664, + "learning_rate": 2e-05, + "loss": 0.1383, + "step": 430 + }, + { + "epoch": 1.389776357827476, + "grad_norm": 1.3937502030266669, + "learning_rate": 2e-05, + "loss": 0.123, + "step": 435 + }, + { + "epoch": 1.4057507987220448, + "grad_norm": 1.9311268379527509, + "learning_rate": 2e-05, + "loss": 0.1464, + "step": 440 + }, + { + "epoch": 1.4217252396166133, + "grad_norm": 1.5812762702306977, + "learning_rate": 2e-05, + "loss": 0.1282, + "step": 445 + }, + { + "epoch": 1.4376996805111821, + "grad_norm": 1.4187576510125102, + "learning_rate": 2e-05, + "loss": 0.1442, + "step": 450 + }, + { + "epoch": 1.4536741214057507, + "grad_norm": 2.3028021469112385, + "learning_rate": 2e-05, + "loss": 0.1393, + "step": 455 + }, + { + "epoch": 1.4696485623003195, + "grad_norm": 1.6201932621396478, + "learning_rate": 2e-05, + "loss": 0.1424, + "step": 460 + }, + { + "epoch": 1.4856230031948883, + "grad_norm": 6.491080482525731, + "learning_rate": 2e-05, + "loss": 0.1645, + "step": 465 + }, + { + "epoch": 1.5015974440894568, + "grad_norm": 2.58391255169585, + "learning_rate": 2e-05, + "loss": 0.1334, + "step": 470 + }, + { + "epoch": 1.5175718849840254, + "grad_norm": 1.3586070147565672, + "learning_rate": 2e-05, + "loss": 0.1315, + "step": 475 + }, + { + "epoch": 1.5335463258785942, + "grad_norm": 2.733123473010616, + "learning_rate": 2e-05, + "loss": 0.1314, + "step": 480 + }, + { + "epoch": 1.549520766773163, + "grad_norm": 1.3304270077738738, + "learning_rate": 2e-05, + "loss": 0.1275, + "step": 485 + }, + { + "epoch": 1.5654952076677318, + "grad_norm": 1.9676141375354392, + "learning_rate": 2e-05, + "loss": 0.1341, + "step": 490 + }, + { + "epoch": 1.5814696485623003, + "grad_norm": 1.2246193545539361, + "learning_rate": 2e-05, + "loss": 0.118, + "step": 495 + }, + { + "epoch": 1.5974440894568689, + "grad_norm": 1.8280491286099871, + "learning_rate": 2e-05, + "loss": 0.1327, + "step": 500 + }, + { + "epoch": 1.6134185303514377, + "grad_norm": 1.6446300714378677, + "learning_rate": 2e-05, + "loss": 0.1324, + "step": 505 + }, + { + "epoch": 1.6293929712460065, + "grad_norm": 1.6264106258984186, + "learning_rate": 2e-05, + "loss": 0.1181, + "step": 510 + }, + { + "epoch": 1.645367412140575, + "grad_norm": 1.2565344330053252, + "learning_rate": 2e-05, + "loss": 0.1242, + "step": 515 + }, + { + "epoch": 1.6613418530351438, + "grad_norm": 3.531193389155649, + "learning_rate": 2e-05, + "loss": 0.1449, + "step": 520 + }, + { + "epoch": 1.6773162939297124, + "grad_norm": 1.6720594005561888, + "learning_rate": 2e-05, + "loss": 0.1241, + "step": 525 + }, + { + "epoch": 1.6932907348242812, + "grad_norm": 1.5686698135340418, + "learning_rate": 2e-05, + "loss": 0.1313, + "step": 530 + }, + { + "epoch": 1.70926517571885, + "grad_norm": 1.349019597797907, + "learning_rate": 2e-05, + "loss": 0.1204, + "step": 535 + }, + { + "epoch": 1.7252396166134185, + "grad_norm": 1.6886302104516848, + "learning_rate": 2e-05, + "loss": 0.1282, + "step": 540 + }, + { + "epoch": 1.741214057507987, + "grad_norm": 1.182710098581308, + "learning_rate": 2e-05, + "loss": 0.1103, + "step": 545 + }, + { + "epoch": 1.7571884984025559, + "grad_norm": 1.561143117049643, + "learning_rate": 2e-05, + "loss": 0.136, + "step": 550 + }, + { + "epoch": 1.7731629392971247, + "grad_norm": 1.7553371062029604, + "learning_rate": 2e-05, + "loss": 0.1533, + "step": 555 + }, + { + "epoch": 1.7891373801916934, + "grad_norm": 2.0761702224590497, + "learning_rate": 2e-05, + "loss": 0.1423, + "step": 560 + }, + { + "epoch": 1.805111821086262, + "grad_norm": 1.3807418410219519, + "learning_rate": 2e-05, + "loss": 0.1594, + "step": 565 + }, + { + "epoch": 1.8210862619808306, + "grad_norm": 1.373853735669036, + "learning_rate": 2e-05, + "loss": 0.1283, + "step": 570 + }, + { + "epoch": 1.8370607028753994, + "grad_norm": 1.7182062272516478, + "learning_rate": 2e-05, + "loss": 0.112, + "step": 575 + }, + { + "epoch": 1.8530351437699681, + "grad_norm": 1.664613239770966, + "learning_rate": 2e-05, + "loss": 0.1145, + "step": 580 + }, + { + "epoch": 1.8690095846645367, + "grad_norm": 1.5615436452993707, + "learning_rate": 2e-05, + "loss": 0.1239, + "step": 585 + }, + { + "epoch": 1.8849840255591053, + "grad_norm": 2.5876340444653083, + "learning_rate": 2e-05, + "loss": 0.1536, + "step": 590 + }, + { + "epoch": 1.900958466453674, + "grad_norm": 1.8052711043442962, + "learning_rate": 2e-05, + "loss": 0.1325, + "step": 595 + }, + { + "epoch": 1.9169329073482428, + "grad_norm": 1.081108063876394, + "learning_rate": 2e-05, + "loss": 0.1145, + "step": 600 + }, + { + "epoch": 1.9329073482428116, + "grad_norm": 2.0564096508677006, + "learning_rate": 2e-05, + "loss": 0.1465, + "step": 605 + }, + { + "epoch": 1.9488817891373802, + "grad_norm": 1.3664466495445207, + "learning_rate": 2e-05, + "loss": 0.1168, + "step": 610 + }, + { + "epoch": 1.9648562300319488, + "grad_norm": 1.8759113558973934, + "learning_rate": 2e-05, + "loss": 0.1324, + "step": 615 + }, + { + "epoch": 1.9808306709265175, + "grad_norm": 2.2588179463096294, + "learning_rate": 2e-05, + "loss": 0.1334, + "step": 620 + }, + { + "epoch": 1.9968051118210863, + "grad_norm": 1.4113722123835157, + "learning_rate": 2e-05, + "loss": 0.128, + "step": 625 + } + ], + "logging_steps": 5, + "max_steps": 626, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 313, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 5387801591808.0, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_3b_base_10000/checkpoint-626/training_args.bin b/specialized_llm_3b_base_10000/checkpoint-626/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..ae88350b68635c9a3134f93e2db7c888be2095f1 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:881b520911ba8485e47473e30c27d524bc5ae00678a7fa50397d269c168f0a53 +size 8760 diff --git a/specialized_llm_3b_base_10000/checkpoint-626/zero_to_fp32.py b/specialized_llm_3b_base_10000/checkpoint-626/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_3b_base_10000/checkpoint-626/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_3b_base_2000/checkpoint-125/config.json b/specialized_llm_3b_base_2000/checkpoint-125/config.json new file mode 100644 index 0000000000000000000000000000000000000000..3e1d47b9c28f155b84127d51a1458101e38a94da --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-3B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 128, + "hidden_act": "silu", + "hidden_size": 3072, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 24, + "num_hidden_layers": 28, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_3b_base_2000/checkpoint-125/generation_config.json b/specialized_llm_3b_base_2000/checkpoint-125/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_3b_base_2000/checkpoint-125/latest b/specialized_llm_3b_base_2000/checkpoint-125/latest new file mode 100644 index 0000000000000000000000000000000000000000..ec11df2484fba73585bfe0e447f43f9ca1290f4a --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/latest @@ -0,0 +1 @@ +global_step125 \ No newline at end of file diff --git a/specialized_llm_3b_base_2000/checkpoint-125/model-00001-of-00002.safetensors b/specialized_llm_3b_base_2000/checkpoint-125/model-00001-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..dea8ef5c61a016a9093a1f960ad0bb39226a6ffb --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/model-00001-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d5b0eaf08e9bdff6546264ccb45dafd99bcc347bd6cf207db028aeb41ba91dbf +size 4965811384 diff --git a/specialized_llm_3b_base_2000/checkpoint-125/model-00002-of-00002.safetensors b/specialized_llm_3b_base_2000/checkpoint-125/model-00002-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..af343bf02a935a3d46fe39961a0a04599d8e2374 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/model-00002-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6fe3e48d7d9105f957f026cb28f53b3abfd0670ee2fd6ee2fb334261c4f97297 +size 1459729952 diff --git a/specialized_llm_3b_base_2000/checkpoint-125/model.safetensors.index.json b/specialized_llm_3b_base_2000/checkpoint-125/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..60dbbe5a4d1d1eb6b7320f138d25b511a94d3eb4 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/model.safetensors.index.json @@ -0,0 +1,261 @@ +{ + "metadata": { + "total_size": 6425511936 + }, + "weight_map": { + "model.embed_tokens.weight": "model-00001-of-00002.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.norm.weight": "model-00002-of-00002.safetensors" + } +} diff --git a/specialized_llm_3b_base_2000/checkpoint-125/rng_state_0.pth b/specialized_llm_3b_base_2000/checkpoint-125/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b24ba5257472a7c82c4d4247a4c0210ee74f9e61 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4 +size 14512 diff --git a/specialized_llm_3b_base_2000/checkpoint-125/rng_state_1.pth b/specialized_llm_3b_base_2000/checkpoint-125/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..9350a8206512bf8b857f4064425716468c2b7465 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6 +size 14512 diff --git a/specialized_llm_3b_base_2000/checkpoint-125/scheduler.pt b/specialized_llm_3b_base_2000/checkpoint-125/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..6e565a7f07b92af83948fbce6664cd8057f5f1ab --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:95c3f002de042ad31f1f48d346f1b605f1ce309da8c5f5d6e32a1c04df47b27a +size 1064 diff --git a/specialized_llm_3b_base_2000/checkpoint-125/special_tokens_map.json b/specialized_llm_3b_base_2000/checkpoint-125/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_3b_base_2000/checkpoint-125/tokenizer.json b/specialized_llm_3b_base_2000/checkpoint-125/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_3b_base_2000/checkpoint-125/tokenizer_config.json b/specialized_llm_3b_base_2000/checkpoint-125/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_3b_base_2000/checkpoint-125/trainer_state.json b/specialized_llm_3b_base_2000/checkpoint-125/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..75180934c157906c35f70ea7ef38e8303a5a7633 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/trainer_state.json @@ -0,0 +1,208 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 125, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.04, + "grad_norm": 70.7421539782725, + "learning_rate": 2e-05, + "loss": 3.1149, + "step": 5 + }, + { + "epoch": 0.08, + "grad_norm": 15.09072859880559, + "learning_rate": 2e-05, + "loss": 1.406, + "step": 10 + }, + { + "epoch": 0.12, + "grad_norm": 7.0693329204513145, + "learning_rate": 2e-05, + "loss": 0.7931, + "step": 15 + }, + { + "epoch": 0.16, + "grad_norm": 8.8033576656963, + "learning_rate": 2e-05, + "loss": 0.7014, + "step": 20 + }, + { + "epoch": 0.2, + "grad_norm": 7.400279262360077, + "learning_rate": 2e-05, + "loss": 0.598, + "step": 25 + }, + { + "epoch": 0.24, + "grad_norm": 7.01182454517703, + "learning_rate": 2e-05, + "loss": 0.5394, + "step": 30 + }, + { + "epoch": 0.28, + "grad_norm": 7.537641517544406, + "learning_rate": 2e-05, + "loss": 0.5576, + "step": 35 + }, + { + "epoch": 0.32, + "grad_norm": 9.754869247894884, + "learning_rate": 2e-05, + "loss": 0.4711, + "step": 40 + }, + { + "epoch": 0.36, + "grad_norm": 6.192916791419795, + "learning_rate": 2e-05, + "loss": 0.4211, + "step": 45 + }, + { + "epoch": 0.4, + "grad_norm": 7.132668284644636, + "learning_rate": 2e-05, + "loss": 0.3876, + "step": 50 + }, + { + "epoch": 0.44, + "grad_norm": 5.313844242606231, + "learning_rate": 2e-05, + "loss": 0.3831, + "step": 55 + }, + { + "epoch": 0.48, + "grad_norm": 6.787644537295775, + "learning_rate": 2e-05, + "loss": 0.3508, + "step": 60 + }, + { + "epoch": 0.52, + "grad_norm": 6.966928564601877, + "learning_rate": 2e-05, + "loss": 0.3484, + "step": 65 + }, + { + "epoch": 0.56, + "grad_norm": 4.200736517819452, + "learning_rate": 2e-05, + "loss": 0.3062, + "step": 70 + }, + { + "epoch": 0.6, + "grad_norm": 3.859050584964236, + "learning_rate": 2e-05, + "loss": 0.2643, + "step": 75 + }, + { + "epoch": 0.64, + "grad_norm": 5.402889833989488, + "learning_rate": 2e-05, + "loss": 0.3599, + "step": 80 + }, + { + "epoch": 0.68, + "grad_norm": 5.593467866882922, + "learning_rate": 2e-05, + "loss": 0.3161, + "step": 85 + }, + { + "epoch": 0.72, + "grad_norm": 6.843497236450736, + "learning_rate": 2e-05, + "loss": 0.3381, + "step": 90 + }, + { + "epoch": 0.76, + "grad_norm": 6.936205097015907, + "learning_rate": 2e-05, + "loss": 0.2866, + "step": 95 + }, + { + "epoch": 0.8, + "grad_norm": 4.806315360435062, + "learning_rate": 2e-05, + "loss": 0.349, + "step": 100 + }, + { + "epoch": 0.84, + "grad_norm": 4.082906967088612, + "learning_rate": 2e-05, + "loss": 0.3365, + "step": 105 + }, + { + "epoch": 0.88, + "grad_norm": 2.765381963118871, + "learning_rate": 2e-05, + "loss": 0.274, + "step": 110 + }, + { + "epoch": 0.92, + "grad_norm": 5.45076269771246, + "learning_rate": 2e-05, + "loss": 0.2711, + "step": 115 + }, + { + "epoch": 0.96, + "grad_norm": 5.837422756962451, + "learning_rate": 2e-05, + "loss": 0.285, + "step": 120 + }, + { + "epoch": 1.0, + "grad_norm": 4.129602535978777, + "learning_rate": 2e-05, + "loss": 0.341, + "step": 125 + } + ], + "logging_steps": 5, + "max_steps": 250, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 125, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 537919488000.0, + "train_batch_size": 8, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_3b_base_2000/checkpoint-125/training_args.bin b/specialized_llm_3b_base_2000/checkpoint-125/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..a1f53d25440ac21de836da277967d1682f14971c --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:66e20e7682cfe36704a84b81fcca1b0207332b9262183286f32d1edcaea774a7 +size 8760 diff --git a/specialized_llm_3b_base_2000/checkpoint-125/zero_to_fp32.py b/specialized_llm_3b_base_2000/checkpoint-125/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-125/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_3b_base_2000/checkpoint-250/config.json b/specialized_llm_3b_base_2000/checkpoint-250/config.json new file mode 100644 index 0000000000000000000000000000000000000000..3e1d47b9c28f155b84127d51a1458101e38a94da --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-3B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 128, + "hidden_act": "silu", + "hidden_size": 3072, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 24, + "num_hidden_layers": 28, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_3b_base_2000/checkpoint-250/generation_config.json b/specialized_llm_3b_base_2000/checkpoint-250/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_3b_base_2000/checkpoint-250/latest b/specialized_llm_3b_base_2000/checkpoint-250/latest new file mode 100644 index 0000000000000000000000000000000000000000..87449ff1a854ba4a77ea33fbc24adaed3311d6b1 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/latest @@ -0,0 +1 @@ +global_step250 \ No newline at end of file diff --git a/specialized_llm_3b_base_2000/checkpoint-250/model-00001-of-00002.safetensors b/specialized_llm_3b_base_2000/checkpoint-250/model-00001-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..d0f2ef8609ca6dfa95d54ddf393da5af5731ac10 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/model-00001-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:03ada13194ef9bc11e581bd338d1c8a05a1156db5bb0b52ee944db94b70d8be3 +size 4965811384 diff --git a/specialized_llm_3b_base_2000/checkpoint-250/model-00002-of-00002.safetensors b/specialized_llm_3b_base_2000/checkpoint-250/model-00002-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..04c97de2e613df362ae02222f17315c06fc0bce4 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/model-00002-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b608652a77f0f5dd7cabc963e5aad9ea55378298e419ee35f72f198b0c38c237 +size 1459729952 diff --git a/specialized_llm_3b_base_2000/checkpoint-250/model.safetensors.index.json b/specialized_llm_3b_base_2000/checkpoint-250/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..60dbbe5a4d1d1eb6b7320f138d25b511a94d3eb4 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/model.safetensors.index.json @@ -0,0 +1,261 @@ +{ + "metadata": { + "total_size": 6425511936 + }, + "weight_map": { + "model.embed_tokens.weight": "model-00001-of-00002.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.norm.weight": "model-00002-of-00002.safetensors" + } +} diff --git a/specialized_llm_3b_base_2000/checkpoint-250/rng_state_0.pth b/specialized_llm_3b_base_2000/checkpoint-250/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..d46a9ba7690e83fef48d0cf5f4c34bd9df6cc737 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6cb795a5cea0baa625c50007a6c9da09c6bbb5c16b560424070384a479e7d8a6 +size 14512 diff --git a/specialized_llm_3b_base_2000/checkpoint-250/rng_state_1.pth b/specialized_llm_3b_base_2000/checkpoint-250/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..23784d04394ff924f7fca03236f62241ce5f4b6e --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f19604377bd828eb366c68946ad997a4ff4d69beaeea93ee58915135768ec63 +size 14512 diff --git a/specialized_llm_3b_base_2000/checkpoint-250/scheduler.pt b/specialized_llm_3b_base_2000/checkpoint-250/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..6ef24269547fb7b5001955fc39c7832f5b5fbe17 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c95ea9768932fc7293e24852961b6812ebc68c0fe02a77bc8140020c807b4c16 +size 1064 diff --git a/specialized_llm_3b_base_2000/checkpoint-250/special_tokens_map.json b/specialized_llm_3b_base_2000/checkpoint-250/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_3b_base_2000/checkpoint-250/tokenizer.json b/specialized_llm_3b_base_2000/checkpoint-250/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_3b_base_2000/checkpoint-250/tokenizer_config.json b/specialized_llm_3b_base_2000/checkpoint-250/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_3b_base_2000/checkpoint-250/trainer_state.json b/specialized_llm_3b_base_2000/checkpoint-250/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..953ef32ab6e9fb0cfda112723649598c5006563a --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/trainer_state.json @@ -0,0 +1,383 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 2.0, + "eval_steps": 500, + "global_step": 250, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.04, + "grad_norm": 70.7421539782725, + "learning_rate": 2e-05, + "loss": 3.1149, + "step": 5 + }, + { + "epoch": 0.08, + "grad_norm": 15.09072859880559, + "learning_rate": 2e-05, + "loss": 1.406, + "step": 10 + }, + { + "epoch": 0.12, + "grad_norm": 7.0693329204513145, + "learning_rate": 2e-05, + "loss": 0.7931, + "step": 15 + }, + { + "epoch": 0.16, + "grad_norm": 8.8033576656963, + "learning_rate": 2e-05, + "loss": 0.7014, + "step": 20 + }, + { + "epoch": 0.2, + "grad_norm": 7.400279262360077, + "learning_rate": 2e-05, + "loss": 0.598, + "step": 25 + }, + { + "epoch": 0.24, + "grad_norm": 7.01182454517703, + "learning_rate": 2e-05, + "loss": 0.5394, + "step": 30 + }, + { + "epoch": 0.28, + "grad_norm": 7.537641517544406, + "learning_rate": 2e-05, + "loss": 0.5576, + "step": 35 + }, + { + "epoch": 0.32, + "grad_norm": 9.754869247894884, + "learning_rate": 2e-05, + "loss": 0.4711, + "step": 40 + }, + { + "epoch": 0.36, + "grad_norm": 6.192916791419795, + "learning_rate": 2e-05, + "loss": 0.4211, + "step": 45 + }, + { + "epoch": 0.4, + "grad_norm": 7.132668284644636, + "learning_rate": 2e-05, + "loss": 0.3876, + "step": 50 + }, + { + "epoch": 0.44, + "grad_norm": 5.313844242606231, + "learning_rate": 2e-05, + "loss": 0.3831, + "step": 55 + }, + { + "epoch": 0.48, + "grad_norm": 6.787644537295775, + "learning_rate": 2e-05, + "loss": 0.3508, + "step": 60 + }, + { + "epoch": 0.52, + "grad_norm": 6.966928564601877, + "learning_rate": 2e-05, + "loss": 0.3484, + "step": 65 + }, + { + "epoch": 0.56, + "grad_norm": 4.200736517819452, + "learning_rate": 2e-05, + "loss": 0.3062, + "step": 70 + }, + { + "epoch": 0.6, + "grad_norm": 3.859050584964236, + "learning_rate": 2e-05, + "loss": 0.2643, + "step": 75 + }, + { + "epoch": 0.64, + "grad_norm": 5.402889833989488, + "learning_rate": 2e-05, + "loss": 0.3599, + "step": 80 + }, + { + "epoch": 0.68, + "grad_norm": 5.593467866882922, + "learning_rate": 2e-05, + "loss": 0.3161, + "step": 85 + }, + { + "epoch": 0.72, + "grad_norm": 6.843497236450736, + "learning_rate": 2e-05, + "loss": 0.3381, + "step": 90 + }, + { + "epoch": 0.76, + "grad_norm": 6.936205097015907, + "learning_rate": 2e-05, + "loss": 0.2866, + "step": 95 + }, + { + "epoch": 0.8, + "grad_norm": 4.806315360435062, + "learning_rate": 2e-05, + "loss": 0.349, + "step": 100 + }, + { + "epoch": 0.84, + "grad_norm": 4.082906967088612, + "learning_rate": 2e-05, + "loss": 0.3365, + "step": 105 + }, + { + "epoch": 0.88, + "grad_norm": 2.765381963118871, + "learning_rate": 2e-05, + "loss": 0.274, + "step": 110 + }, + { + "epoch": 0.92, + "grad_norm": 5.45076269771246, + "learning_rate": 2e-05, + "loss": 0.2711, + "step": 115 + }, + { + "epoch": 0.96, + "grad_norm": 5.837422756962451, + "learning_rate": 2e-05, + "loss": 0.285, + "step": 120 + }, + { + "epoch": 1.0, + "grad_norm": 4.129602535978777, + "learning_rate": 2e-05, + "loss": 0.341, + "step": 125 + }, + { + "epoch": 1.04, + "grad_norm": 2.8978415728168248, + "learning_rate": 2e-05, + "loss": 0.1887, + "step": 130 + }, + { + "epoch": 1.08, + "grad_norm": 3.376865944981109, + "learning_rate": 2e-05, + "loss": 0.1939, + "step": 135 + }, + { + "epoch": 1.12, + "grad_norm": 4.116987399813159, + "learning_rate": 2e-05, + "loss": 0.1817, + "step": 140 + }, + { + "epoch": 1.16, + "grad_norm": 3.5952908534285406, + "learning_rate": 2e-05, + "loss": 0.1661, + "step": 145 + }, + { + "epoch": 1.2, + "grad_norm": 3.164495832555852, + "learning_rate": 2e-05, + "loss": 0.1698, + "step": 150 + }, + { + "epoch": 1.24, + "grad_norm": 3.7833249119936085, + "learning_rate": 2e-05, + "loss": 0.1599, + "step": 155 + }, + { + "epoch": 1.28, + "grad_norm": 4.053808187606665, + "learning_rate": 2e-05, + "loss": 0.1762, + "step": 160 + }, + { + "epoch": 1.32, + "grad_norm": 4.551068619140234, + "learning_rate": 2e-05, + "loss": 0.1732, + "step": 165 + }, + { + "epoch": 1.3599999999999999, + "grad_norm": 3.0542777774341863, + "learning_rate": 2e-05, + "loss": 0.1844, + "step": 170 + }, + { + "epoch": 1.4, + "grad_norm": 4.495090806087985, + "learning_rate": 2e-05, + "loss": 0.1646, + "step": 175 + }, + { + "epoch": 1.44, + "grad_norm": 3.0405065491230614, + "learning_rate": 2e-05, + "loss": 0.2126, + "step": 180 + }, + { + "epoch": 1.48, + "grad_norm": 3.7424375341138134, + "learning_rate": 2e-05, + "loss": 0.1835, + "step": 185 + }, + { + "epoch": 1.52, + "grad_norm": 4.863214827798488, + "learning_rate": 2e-05, + "loss": 0.1793, + "step": 190 + }, + { + "epoch": 1.56, + "grad_norm": 3.064234223139964, + "learning_rate": 2e-05, + "loss": 0.1807, + "step": 195 + }, + { + "epoch": 1.6, + "grad_norm": 2.91580757784845, + "learning_rate": 2e-05, + "loss": 0.1664, + "step": 200 + }, + { + "epoch": 1.6400000000000001, + "grad_norm": 3.4443767714732387, + "learning_rate": 2e-05, + "loss": 0.179, + "step": 205 + }, + { + "epoch": 1.6800000000000002, + "grad_norm": 3.034216664926243, + "learning_rate": 2e-05, + "loss": 0.1644, + "step": 210 + }, + { + "epoch": 1.72, + "grad_norm": 4.183801414867337, + "learning_rate": 2e-05, + "loss": 0.1845, + "step": 215 + }, + { + "epoch": 1.76, + "grad_norm": 2.674776095061975, + "learning_rate": 2e-05, + "loss": 0.1711, + "step": 220 + }, + { + "epoch": 1.8, + "grad_norm": 3.137688048966482, + "learning_rate": 2e-05, + "loss": 0.1835, + "step": 225 + }, + { + "epoch": 1.8399999999999999, + "grad_norm": 5.643576801118469, + "learning_rate": 2e-05, + "loss": 0.2104, + "step": 230 + }, + { + "epoch": 1.88, + "grad_norm": 4.446748547851018, + "learning_rate": 2e-05, + "loss": 0.2117, + "step": 235 + }, + { + "epoch": 1.92, + "grad_norm": 2.633948696375067, + "learning_rate": 2e-05, + "loss": 0.1435, + "step": 240 + }, + { + "epoch": 1.96, + "grad_norm": 4.84313275872657, + "learning_rate": 2e-05, + "loss": 0.1888, + "step": 245 + }, + { + "epoch": 2.0, + "grad_norm": 3.0493817418436016, + "learning_rate": 2e-05, + "loss": 0.1907, + "step": 250 + } + ], + "logging_steps": 5, + "max_steps": 250, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 125, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 1075838976000.0, + "train_batch_size": 8, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_3b_base_2000/checkpoint-250/training_args.bin b/specialized_llm_3b_base_2000/checkpoint-250/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..a1f53d25440ac21de836da277967d1682f14971c --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:66e20e7682cfe36704a84b81fcca1b0207332b9262183286f32d1edcaea774a7 +size 8760 diff --git a/specialized_llm_3b_base_2000/checkpoint-250/zero_to_fp32.py b/specialized_llm_3b_base_2000/checkpoint-250/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_3b_base_2000/checkpoint-250/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_3b_base_500/checkpoint-125/config.json b/specialized_llm_3b_base_500/checkpoint-125/config.json new file mode 100644 index 0000000000000000000000000000000000000000..3e1d47b9c28f155b84127d51a1458101e38a94da --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-3B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 128, + "hidden_act": "silu", + "hidden_size": 3072, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 24, + "num_hidden_layers": 28, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_3b_base_500/checkpoint-125/generation_config.json b/specialized_llm_3b_base_500/checkpoint-125/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_3b_base_500/checkpoint-125/latest b/specialized_llm_3b_base_500/checkpoint-125/latest new file mode 100644 index 0000000000000000000000000000000000000000..ec11df2484fba73585bfe0e447f43f9ca1290f4a --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/latest @@ -0,0 +1 @@ +global_step125 \ No newline at end of file diff --git a/specialized_llm_3b_base_500/checkpoint-125/model-00001-of-00002.safetensors b/specialized_llm_3b_base_500/checkpoint-125/model-00001-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..d779e3abf2defd7847ce8f6466da125f2f5bf618 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/model-00001-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e2bf71b5ec69de24740d053a280efbc2cd14950dd5a9d9003b221fe23b70d92b +size 4965811384 diff --git a/specialized_llm_3b_base_500/checkpoint-125/model-00002-of-00002.safetensors b/specialized_llm_3b_base_500/checkpoint-125/model-00002-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..83990b949a26578c2b705d101e794442aa65f32b --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/model-00002-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7edb4736264785de4c8a260b2f49f3aba983f3aa90cddf04cc932003b238ad55 +size 1459729952 diff --git a/specialized_llm_3b_base_500/checkpoint-125/model.safetensors.index.json b/specialized_llm_3b_base_500/checkpoint-125/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..60dbbe5a4d1d1eb6b7320f138d25b511a94d3eb4 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/model.safetensors.index.json @@ -0,0 +1,261 @@ +{ + "metadata": { + "total_size": 6425511936 + }, + "weight_map": { + "model.embed_tokens.weight": "model-00001-of-00002.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.norm.weight": "model-00002-of-00002.safetensors" + } +} diff --git a/specialized_llm_3b_base_500/checkpoint-125/rng_state_0.pth b/specialized_llm_3b_base_500/checkpoint-125/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b24ba5257472a7c82c4d4247a4c0210ee74f9e61 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4 +size 14512 diff --git a/specialized_llm_3b_base_500/checkpoint-125/rng_state_1.pth b/specialized_llm_3b_base_500/checkpoint-125/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..9350a8206512bf8b857f4064425716468c2b7465 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6 +size 14512 diff --git a/specialized_llm_3b_base_500/checkpoint-125/scheduler.pt b/specialized_llm_3b_base_500/checkpoint-125/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..6e565a7f07b92af83948fbce6664cd8057f5f1ab --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:95c3f002de042ad31f1f48d346f1b605f1ce309da8c5f5d6e32a1c04df47b27a +size 1064 diff --git a/specialized_llm_3b_base_500/checkpoint-125/special_tokens_map.json b/specialized_llm_3b_base_500/checkpoint-125/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_3b_base_500/checkpoint-125/tokenizer.json b/specialized_llm_3b_base_500/checkpoint-125/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_3b_base_500/checkpoint-125/tokenizer_config.json b/specialized_llm_3b_base_500/checkpoint-125/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_3b_base_500/checkpoint-125/trainer_state.json b/specialized_llm_3b_base_500/checkpoint-125/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..af4f5146a987abc06cf0c7727cd9073c3df558d2 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/trainer_state.json @@ -0,0 +1,208 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 125, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.04, + "grad_norm": 43.15390933771313, + "learning_rate": 2e-05, + "loss": 3.4579, + "step": 5 + }, + { + "epoch": 0.08, + "grad_norm": 33.827548986651976, + "learning_rate": 2e-05, + "loss": 1.8546, + "step": 10 + }, + { + "epoch": 0.12, + "grad_norm": 18.791160427544224, + "learning_rate": 2e-05, + "loss": 1.1267, + "step": 15 + }, + { + "epoch": 0.16, + "grad_norm": 19.37940918337396, + "learning_rate": 2e-05, + "loss": 0.9415, + "step": 20 + }, + { + "epoch": 0.2, + "grad_norm": 16.814595264828863, + "learning_rate": 2e-05, + "loss": 0.8674, + "step": 25 + }, + { + "epoch": 0.24, + "grad_norm": 17.3811071281643, + "learning_rate": 2e-05, + "loss": 0.8408, + "step": 30 + }, + { + "epoch": 0.28, + "grad_norm": 16.329934038097615, + "learning_rate": 2e-05, + "loss": 0.8641, + "step": 35 + }, + { + "epoch": 0.32, + "grad_norm": 9.402671231202799, + "learning_rate": 2e-05, + "loss": 0.5568, + "step": 40 + }, + { + "epoch": 0.36, + "grad_norm": 8.034500434390798, + "learning_rate": 2e-05, + "loss": 0.6175, + "step": 45 + }, + { + "epoch": 0.4, + "grad_norm": 14.018662057098695, + "learning_rate": 2e-05, + "loss": 0.8144, + "step": 50 + }, + { + "epoch": 0.44, + "grad_norm": 17.147690806406523, + "learning_rate": 2e-05, + "loss": 0.5462, + "step": 55 + }, + { + "epoch": 0.48, + "grad_norm": 10.908140580769023, + "learning_rate": 2e-05, + "loss": 0.5826, + "step": 60 + }, + { + "epoch": 0.52, + "grad_norm": 14.627750955259437, + "learning_rate": 2e-05, + "loss": 0.6075, + "step": 65 + }, + { + "epoch": 0.56, + "grad_norm": 9.915072889782175, + "learning_rate": 2e-05, + "loss": 0.4196, + "step": 70 + }, + { + "epoch": 0.6, + "grad_norm": 9.288444728562116, + "learning_rate": 2e-05, + "loss": 0.4886, + "step": 75 + }, + { + "epoch": 0.64, + "grad_norm": 8.289320687682293, + "learning_rate": 2e-05, + "loss": 0.4314, + "step": 80 + }, + { + "epoch": 0.68, + "grad_norm": 18.060710913008197, + "learning_rate": 2e-05, + "loss": 0.4967, + "step": 85 + }, + { + "epoch": 0.72, + "grad_norm": 11.922963798535555, + "learning_rate": 2e-05, + "loss": 0.4313, + "step": 90 + }, + { + "epoch": 0.76, + "grad_norm": 9.927069697521025, + "learning_rate": 2e-05, + "loss": 0.5131, + "step": 95 + }, + { + "epoch": 0.8, + "grad_norm": 9.478974149520885, + "learning_rate": 2e-05, + "loss": 0.4378, + "step": 100 + }, + { + "epoch": 0.84, + "grad_norm": 6.919853116320885, + "learning_rate": 2e-05, + "loss": 0.413, + "step": 105 + }, + { + "epoch": 0.88, + "grad_norm": 6.5208322689719855, + "learning_rate": 2e-05, + "loss": 0.3616, + "step": 110 + }, + { + "epoch": 0.92, + "grad_norm": 8.934283566135107, + "learning_rate": 2e-05, + "loss": 0.4379, + "step": 115 + }, + { + "epoch": 0.96, + "grad_norm": 18.93047862380116, + "learning_rate": 2e-05, + "loss": 0.5101, + "step": 120 + }, + { + "epoch": 1.0, + "grad_norm": 12.099925403089268, + "learning_rate": 2e-05, + "loss": 0.5204, + "step": 125 + } + ], + "logging_steps": 5, + "max_steps": 250, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 125, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 134479872000.0, + "train_batch_size": 2, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_3b_base_500/checkpoint-125/training_args.bin b/specialized_llm_3b_base_500/checkpoint-125/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..0a1563dbc4898dd93a2c7e4d4549a3f7eccd9550 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f77316c73e9f30ba70312738a5827fc4467b4ea97cf228e94baec1c7b3840af7 +size 8760 diff --git a/specialized_llm_3b_base_500/checkpoint-125/zero_to_fp32.py b/specialized_llm_3b_base_500/checkpoint-125/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-125/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_3b_base_500/checkpoint-250/config.json b/specialized_llm_3b_base_500/checkpoint-250/config.json new file mode 100644 index 0000000000000000000000000000000000000000..3e1d47b9c28f155b84127d51a1458101e38a94da --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-3B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 128, + "hidden_act": "silu", + "hidden_size": 3072, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 24, + "num_hidden_layers": 28, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_3b_base_500/checkpoint-250/generation_config.json b/specialized_llm_3b_base_500/checkpoint-250/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_3b_base_500/checkpoint-250/latest b/specialized_llm_3b_base_500/checkpoint-250/latest new file mode 100644 index 0000000000000000000000000000000000000000..87449ff1a854ba4a77ea33fbc24adaed3311d6b1 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/latest @@ -0,0 +1 @@ +global_step250 \ No newline at end of file diff --git a/specialized_llm_3b_base_500/checkpoint-250/model-00001-of-00002.safetensors b/specialized_llm_3b_base_500/checkpoint-250/model-00001-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..3ede06f17d5e5d7a870ab32b1b746be946a7f624 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/model-00001-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:545c2ad1c6d3efda52e7e7e90292946f6a377ca6e739b312883b711f90d58357 +size 4965811384 diff --git a/specialized_llm_3b_base_500/checkpoint-250/model-00002-of-00002.safetensors b/specialized_llm_3b_base_500/checkpoint-250/model-00002-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..049f7b6b0ce7cdc89a1be30d762a9e9a9088a7ce --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/model-00002-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8e0471ecab2564449b2751b61a07a7b7d24dfa792e2346d13848290d59c8b699 +size 1459729952 diff --git a/specialized_llm_3b_base_500/checkpoint-250/model.safetensors.index.json b/specialized_llm_3b_base_500/checkpoint-250/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..60dbbe5a4d1d1eb6b7320f138d25b511a94d3eb4 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/model.safetensors.index.json @@ -0,0 +1,261 @@ +{ + "metadata": { + "total_size": 6425511936 + }, + "weight_map": { + "model.embed_tokens.weight": "model-00001-of-00002.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.norm.weight": "model-00002-of-00002.safetensors" + } +} diff --git a/specialized_llm_3b_base_500/checkpoint-250/rng_state_0.pth b/specialized_llm_3b_base_500/checkpoint-250/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..d46a9ba7690e83fef48d0cf5f4c34bd9df6cc737 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6cb795a5cea0baa625c50007a6c9da09c6bbb5c16b560424070384a479e7d8a6 +size 14512 diff --git a/specialized_llm_3b_base_500/checkpoint-250/rng_state_1.pth b/specialized_llm_3b_base_500/checkpoint-250/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..23784d04394ff924f7fca03236f62241ce5f4b6e --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f19604377bd828eb366c68946ad997a4ff4d69beaeea93ee58915135768ec63 +size 14512 diff --git a/specialized_llm_3b_base_500/checkpoint-250/scheduler.pt b/specialized_llm_3b_base_500/checkpoint-250/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..6ef24269547fb7b5001955fc39c7832f5b5fbe17 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c95ea9768932fc7293e24852961b6812ebc68c0fe02a77bc8140020c807b4c16 +size 1064 diff --git a/specialized_llm_3b_base_500/checkpoint-250/special_tokens_map.json b/specialized_llm_3b_base_500/checkpoint-250/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_3b_base_500/checkpoint-250/tokenizer.json b/specialized_llm_3b_base_500/checkpoint-250/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_3b_base_500/checkpoint-250/tokenizer_config.json b/specialized_llm_3b_base_500/checkpoint-250/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_3b_base_500/checkpoint-250/trainer_state.json b/specialized_llm_3b_base_500/checkpoint-250/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..2d02fe420d7b57eb7d26c3e6cc75062a217548d3 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/trainer_state.json @@ -0,0 +1,383 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 2.0, + "eval_steps": 500, + "global_step": 250, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.04, + "grad_norm": 43.15390933771313, + "learning_rate": 2e-05, + "loss": 3.4579, + "step": 5 + }, + { + "epoch": 0.08, + "grad_norm": 33.827548986651976, + "learning_rate": 2e-05, + "loss": 1.8546, + "step": 10 + }, + { + "epoch": 0.12, + "grad_norm": 18.791160427544224, + "learning_rate": 2e-05, + "loss": 1.1267, + "step": 15 + }, + { + "epoch": 0.16, + "grad_norm": 19.37940918337396, + "learning_rate": 2e-05, + "loss": 0.9415, + "step": 20 + }, + { + "epoch": 0.2, + "grad_norm": 16.814595264828863, + "learning_rate": 2e-05, + "loss": 0.8674, + "step": 25 + }, + { + "epoch": 0.24, + "grad_norm": 17.3811071281643, + "learning_rate": 2e-05, + "loss": 0.8408, + "step": 30 + }, + { + "epoch": 0.28, + "grad_norm": 16.329934038097615, + "learning_rate": 2e-05, + "loss": 0.8641, + "step": 35 + }, + { + "epoch": 0.32, + "grad_norm": 9.402671231202799, + "learning_rate": 2e-05, + "loss": 0.5568, + "step": 40 + }, + { + "epoch": 0.36, + "grad_norm": 8.034500434390798, + "learning_rate": 2e-05, + "loss": 0.6175, + "step": 45 + }, + { + "epoch": 0.4, + "grad_norm": 14.018662057098695, + "learning_rate": 2e-05, + "loss": 0.8144, + "step": 50 + }, + { + "epoch": 0.44, + "grad_norm": 17.147690806406523, + "learning_rate": 2e-05, + "loss": 0.5462, + "step": 55 + }, + { + "epoch": 0.48, + "grad_norm": 10.908140580769023, + "learning_rate": 2e-05, + "loss": 0.5826, + "step": 60 + }, + { + "epoch": 0.52, + "grad_norm": 14.627750955259437, + "learning_rate": 2e-05, + "loss": 0.6075, + "step": 65 + }, + { + "epoch": 0.56, + "grad_norm": 9.915072889782175, + "learning_rate": 2e-05, + "loss": 0.4196, + "step": 70 + }, + { + "epoch": 0.6, + "grad_norm": 9.288444728562116, + "learning_rate": 2e-05, + "loss": 0.4886, + "step": 75 + }, + { + "epoch": 0.64, + "grad_norm": 8.289320687682293, + "learning_rate": 2e-05, + "loss": 0.4314, + "step": 80 + }, + { + "epoch": 0.68, + "grad_norm": 18.060710913008197, + "learning_rate": 2e-05, + "loss": 0.4967, + "step": 85 + }, + { + "epoch": 0.72, + "grad_norm": 11.922963798535555, + "learning_rate": 2e-05, + "loss": 0.4313, + "step": 90 + }, + { + "epoch": 0.76, + "grad_norm": 9.927069697521025, + "learning_rate": 2e-05, + "loss": 0.5131, + "step": 95 + }, + { + "epoch": 0.8, + "grad_norm": 9.478974149520885, + "learning_rate": 2e-05, + "loss": 0.4378, + "step": 100 + }, + { + "epoch": 0.84, + "grad_norm": 6.919853116320885, + "learning_rate": 2e-05, + "loss": 0.413, + "step": 105 + }, + { + "epoch": 0.88, + "grad_norm": 6.5208322689719855, + "learning_rate": 2e-05, + "loss": 0.3616, + "step": 110 + }, + { + "epoch": 0.92, + "grad_norm": 8.934283566135107, + "learning_rate": 2e-05, + "loss": 0.4379, + "step": 115 + }, + { + "epoch": 0.96, + "grad_norm": 18.93047862380116, + "learning_rate": 2e-05, + "loss": 0.5101, + "step": 120 + }, + { + "epoch": 1.0, + "grad_norm": 12.099925403089268, + "learning_rate": 2e-05, + "loss": 0.5204, + "step": 125 + }, + { + "epoch": 1.04, + "grad_norm": 12.209530326412617, + "learning_rate": 2e-05, + "loss": 0.4854, + "step": 130 + }, + { + "epoch": 1.08, + "grad_norm": 8.06610263447839, + "learning_rate": 2e-05, + "loss": 0.2969, + "step": 135 + }, + { + "epoch": 1.12, + "grad_norm": 14.840228612232393, + "learning_rate": 2e-05, + "loss": 0.3542, + "step": 140 + }, + { + "epoch": 1.16, + "grad_norm": 6.481666441349305, + "learning_rate": 2e-05, + "loss": 0.3072, + "step": 145 + }, + { + "epoch": 1.2, + "grad_norm": 6.179918966435735, + "learning_rate": 2e-05, + "loss": 0.3233, + "step": 150 + }, + { + "epoch": 1.24, + "grad_norm": 10.826501934212496, + "learning_rate": 2e-05, + "loss": 0.3077, + "step": 155 + }, + { + "epoch": 1.28, + "grad_norm": 4.4856551421266095, + "learning_rate": 2e-05, + "loss": 0.2561, + "step": 160 + }, + { + "epoch": 1.32, + "grad_norm": 7.305221563302673, + "learning_rate": 2e-05, + "loss": 0.2974, + "step": 165 + }, + { + "epoch": 1.3599999999999999, + "grad_norm": 6.911243938873422, + "learning_rate": 2e-05, + "loss": 0.2809, + "step": 170 + }, + { + "epoch": 1.4, + "grad_norm": 9.316078314091333, + "learning_rate": 2e-05, + "loss": 0.2167, + "step": 175 + }, + { + "epoch": 1.44, + "grad_norm": 3.7775793937461324, + "learning_rate": 2e-05, + "loss": 0.2494, + "step": 180 + }, + { + "epoch": 1.48, + "grad_norm": 6.438614163029669, + "learning_rate": 2e-05, + "loss": 0.2855, + "step": 185 + }, + { + "epoch": 1.52, + "grad_norm": 7.870963363265868, + "learning_rate": 2e-05, + "loss": 0.2166, + "step": 190 + }, + { + "epoch": 1.56, + "grad_norm": 5.24402307826209, + "learning_rate": 2e-05, + "loss": 0.2549, + "step": 195 + }, + { + "epoch": 1.6, + "grad_norm": 8.084508141514217, + "learning_rate": 2e-05, + "loss": 0.3088, + "step": 200 + }, + { + "epoch": 1.6400000000000001, + "grad_norm": 8.65439219788829, + "learning_rate": 2e-05, + "loss": 0.2474, + "step": 205 + }, + { + "epoch": 1.6800000000000002, + "grad_norm": 8.981007756653598, + "learning_rate": 2e-05, + "loss": 0.3093, + "step": 210 + }, + { + "epoch": 1.72, + "grad_norm": 19.414569969367538, + "learning_rate": 2e-05, + "loss": 0.3461, + "step": 215 + }, + { + "epoch": 1.76, + "grad_norm": 9.261840615893039, + "learning_rate": 2e-05, + "loss": 0.3801, + "step": 220 + }, + { + "epoch": 1.8, + "grad_norm": 7.115411465504168, + "learning_rate": 2e-05, + "loss": 0.2738, + "step": 225 + }, + { + "epoch": 1.8399999999999999, + "grad_norm": 7.22202041609908, + "learning_rate": 2e-05, + "loss": 0.3071, + "step": 230 + }, + { + "epoch": 1.88, + "grad_norm": 6.379766921211121, + "learning_rate": 2e-05, + "loss": 0.2653, + "step": 235 + }, + { + "epoch": 1.92, + "grad_norm": 4.5587465617022565, + "learning_rate": 2e-05, + "loss": 0.2089, + "step": 240 + }, + { + "epoch": 1.96, + "grad_norm": 5.004584377324801, + "learning_rate": 2e-05, + "loss": 0.227, + "step": 245 + }, + { + "epoch": 2.0, + "grad_norm": 8.88893945850978, + "learning_rate": 2e-05, + "loss": 0.3248, + "step": 250 + } + ], + "logging_steps": 5, + "max_steps": 250, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 125, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 268959744000.0, + "train_batch_size": 2, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_3b_base_500/checkpoint-250/training_args.bin b/specialized_llm_3b_base_500/checkpoint-250/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..0a1563dbc4898dd93a2c7e4d4549a3f7eccd9550 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f77316c73e9f30ba70312738a5827fc4467b4ea97cf228e94baec1c7b3840af7 +size 8760 diff --git a/specialized_llm_3b_base_500/checkpoint-250/zero_to_fp32.py b/specialized_llm_3b_base_500/checkpoint-250/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-250/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_3b_base_500/checkpoint-500/config.json b/specialized_llm_3b_base_500/checkpoint-500/config.json new file mode 100644 index 0000000000000000000000000000000000000000..a89b9bc414498beedf446aa2d07e8ed17591b25b --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-3B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128001, + "head_dim": 128, + "hidden_act": "silu", + "hidden_size": 3072, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 24, + "num_hidden_layers": 28, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_3b_base_500/checkpoint-500/generation_config.json b/specialized_llm_3b_base_500/checkpoint-500/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_3b_base_500/checkpoint-500/latest b/specialized_llm_3b_base_500/checkpoint-500/latest new file mode 100644 index 0000000000000000000000000000000000000000..f0b47ce15fff9a01b2a416a473b2148085048a50 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/latest @@ -0,0 +1 @@ +global_step500 \ No newline at end of file diff --git a/specialized_llm_3b_base_500/checkpoint-500/model-00001-of-00002.safetensors b/specialized_llm_3b_base_500/checkpoint-500/model-00001-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..ab856f9a97592ff76675c333f78dd37e278241b8 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/model-00001-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f640c01cd491b65d4bf799c3985378de1a2b7119e6c5e11763e395173eeec6a +size 4965811384 diff --git a/specialized_llm_3b_base_500/checkpoint-500/model-00002-of-00002.safetensors b/specialized_llm_3b_base_500/checkpoint-500/model-00002-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..bf18b24186f7873643e0cb3b3024170c0319ab79 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/model-00002-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ec7e00b27e94ba7f83434b88d55ff3250b52fc74c9ee1c09648e4bebc407e3e1 +size 1459729952 diff --git a/specialized_llm_3b_base_500/checkpoint-500/model.safetensors.index.json b/specialized_llm_3b_base_500/checkpoint-500/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..60dbbe5a4d1d1eb6b7320f138d25b511a94d3eb4 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/model.safetensors.index.json @@ -0,0 +1,261 @@ +{ + "metadata": { + "total_size": 6425511936 + }, + "weight_map": { + "model.embed_tokens.weight": "model-00001-of-00002.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.norm.weight": "model-00002-of-00002.safetensors" + } +} diff --git a/specialized_llm_3b_base_500/checkpoint-500/rng_state_0.pth b/specialized_llm_3b_base_500/checkpoint-500/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..d46a9ba7690e83fef48d0cf5f4c34bd9df6cc737 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6cb795a5cea0baa625c50007a6c9da09c6bbb5c16b560424070384a479e7d8a6 +size 14512 diff --git a/specialized_llm_3b_base_500/checkpoint-500/rng_state_1.pth b/specialized_llm_3b_base_500/checkpoint-500/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..23784d04394ff924f7fca03236f62241ce5f4b6e --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f19604377bd828eb366c68946ad997a4ff4d69beaeea93ee58915135768ec63 +size 14512 diff --git a/specialized_llm_3b_base_500/checkpoint-500/scheduler.pt b/specialized_llm_3b_base_500/checkpoint-500/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..e561c0b28e788d278cc15b1a8a9cc41ed02da35a --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4d9c2a658d4b09a0f8546435057b7f147670c9479e1b2dbcef7f05d3a4d0023b +size 1064 diff --git a/specialized_llm_3b_base_500/checkpoint-500/special_tokens_map.json b/specialized_llm_3b_base_500/checkpoint-500/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..e5b39b6305d89284b04934011c68dbb26bf588ca --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_3b_base_500/checkpoint-500/tokenizer.json b/specialized_llm_3b_base_500/checkpoint-500/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..c0e101717fa606396da4365763b8a035a48f9e97 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9fa686322cbb43fef67b405f40e9ecc35436e3525c8d87d1fe22d36a8a0f5458 +size 17210293 diff --git a/specialized_llm_3b_base_500/checkpoint-500/tokenizer_config.json b/specialized_llm_3b_base_500/checkpoint-500/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..f6024584348bca0ecd5b5fd1be2340ea92fc3a0b --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/tokenizer_config.json @@ -0,0 +1,2080 @@ +{ + "added_tokens_decoder": { + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|end_of_text|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_3b_base_500/checkpoint-500/trainer_state.json b/specialized_llm_3b_base_500/checkpoint-500/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..1ead63a0335521984b53489d7b75b6b6a5d70a39 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/trainer_state.json @@ -0,0 +1,733 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 2.0, + "eval_steps": 500, + "global_step": 500, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.02, + "grad_norm": 192.64206001263068, + "learning_rate": 2e-05, + "loss": 2.9869, + "step": 5 + }, + { + "epoch": 0.04, + "grad_norm": 48.1404574206668, + "learning_rate": 2e-05, + "loss": 1.2726, + "step": 10 + }, + { + "epoch": 0.06, + "grad_norm": 41.79888626205312, + "learning_rate": 2e-05, + "loss": 1.2518, + "step": 15 + }, + { + "epoch": 0.08, + "grad_norm": 18.107174654771164, + "learning_rate": 2e-05, + "loss": 0.694, + "step": 20 + }, + { + "epoch": 0.1, + "grad_norm": 30.2422290061728, + "learning_rate": 2e-05, + "loss": 0.4019, + "step": 25 + }, + { + "epoch": 0.12, + "grad_norm": 32.685282758571375, + "learning_rate": 2e-05, + "loss": 0.7553, + "step": 30 + }, + { + "epoch": 0.14, + "grad_norm": 18.979239258345306, + "learning_rate": 2e-05, + "loss": 0.5813, + "step": 35 + }, + { + "epoch": 0.16, + "grad_norm": 19.764858390255736, + "learning_rate": 2e-05, + "loss": 0.6364, + "step": 40 + }, + { + "epoch": 0.18, + "grad_norm": 22.461668082512883, + "learning_rate": 2e-05, + "loss": 0.7166, + "step": 45 + }, + { + "epoch": 0.2, + "grad_norm": 5.772167653543795, + "learning_rate": 2e-05, + "loss": 0.477, + "step": 50 + }, + { + "epoch": 0.22, + "grad_norm": 23.763305086803346, + "learning_rate": 2e-05, + "loss": 0.4109, + "step": 55 + }, + { + "epoch": 0.24, + "grad_norm": 19.437747488324412, + "learning_rate": 2e-05, + "loss": 0.7639, + "step": 60 + }, + { + "epoch": 0.26, + "grad_norm": 37.05102235979124, + "learning_rate": 2e-05, + "loss": 0.8183, + "step": 65 + }, + { + "epoch": 0.28, + "grad_norm": 23.014514492561837, + "learning_rate": 2e-05, + "loss": 0.6484, + "step": 70 + }, + { + "epoch": 0.3, + "grad_norm": 12.77252167418251, + "learning_rate": 2e-05, + "loss": 0.2884, + "step": 75 + }, + { + "epoch": 0.32, + "grad_norm": 11.73960064185402, + "learning_rate": 2e-05, + "loss": 0.5449, + "step": 80 + }, + { + "epoch": 0.34, + "grad_norm": 28.512782095251783, + "learning_rate": 2e-05, + "loss": 0.4911, + "step": 85 + }, + { + "epoch": 0.36, + "grad_norm": 12.937559735306024, + "learning_rate": 2e-05, + "loss": 0.4353, + "step": 90 + }, + { + "epoch": 0.38, + "grad_norm": 19.839752017761988, + "learning_rate": 2e-05, + "loss": 0.508, + "step": 95 + }, + { + "epoch": 0.4, + "grad_norm": 25.83637222146644, + "learning_rate": 2e-05, + "loss": 0.6268, + "step": 100 + }, + { + "epoch": 0.42, + "grad_norm": 7.866252327982729, + "learning_rate": 2e-05, + "loss": 0.2765, + "step": 105 + }, + { + "epoch": 0.44, + "grad_norm": 19.173168345597215, + "learning_rate": 2e-05, + "loss": 0.3429, + "step": 110 + }, + { + "epoch": 0.46, + "grad_norm": 7.356122490363529, + "learning_rate": 2e-05, + "loss": 0.673, + "step": 115 + }, + { + "epoch": 0.48, + "grad_norm": 25.452330672923093, + "learning_rate": 2e-05, + "loss": 0.2502, + "step": 120 + }, + { + "epoch": 0.5, + "grad_norm": 18.193546104023437, + "learning_rate": 2e-05, + "loss": 0.5538, + "step": 125 + }, + { + "epoch": 0.52, + "grad_norm": 10.606904391146188, + "learning_rate": 2e-05, + "loss": 0.4428, + "step": 130 + }, + { + "epoch": 0.54, + "grad_norm": 24.98698506555314, + "learning_rate": 2e-05, + "loss": 0.7371, + "step": 135 + }, + { + "epoch": 0.56, + "grad_norm": 12.932817524755643, + "learning_rate": 2e-05, + "loss": 0.3546, + "step": 140 + }, + { + "epoch": 0.58, + "grad_norm": 23.09632284588474, + "learning_rate": 2e-05, + "loss": 0.5592, + "step": 145 + }, + { + "epoch": 0.6, + "grad_norm": 12.27489087251143, + "learning_rate": 2e-05, + "loss": 0.5467, + "step": 150 + }, + { + "epoch": 0.62, + "grad_norm": 37.77701888603335, + "learning_rate": 2e-05, + "loss": 0.4446, + "step": 155 + }, + { + "epoch": 0.64, + "grad_norm": 44.43844469994968, + "learning_rate": 2e-05, + "loss": 0.5023, + "step": 160 + }, + { + "epoch": 0.66, + "grad_norm": 24.744024542612852, + "learning_rate": 2e-05, + "loss": 0.5357, + "step": 165 + }, + { + "epoch": 0.68, + "grad_norm": 23.375337882754707, + "learning_rate": 2e-05, + "loss": 0.4636, + "step": 170 + }, + { + "epoch": 0.7, + "grad_norm": 17.471065994038756, + "learning_rate": 2e-05, + "loss": 0.6389, + "step": 175 + }, + { + "epoch": 0.72, + "grad_norm": 17.504412137784108, + "learning_rate": 2e-05, + "loss": 0.4652, + "step": 180 + }, + { + "epoch": 0.74, + "grad_norm": 18.34290057543399, + "learning_rate": 2e-05, + "loss": 0.5353, + "step": 185 + }, + { + "epoch": 0.76, + "grad_norm": 10.469335873485205, + "learning_rate": 2e-05, + "loss": 0.4117, + "step": 190 + }, + { + "epoch": 0.78, + "grad_norm": 8.574566538117475, + "learning_rate": 2e-05, + "loss": 0.1914, + "step": 195 + }, + { + "epoch": 0.8, + "grad_norm": 34.729664060077845, + "learning_rate": 2e-05, + "loss": 0.9078, + "step": 200 + }, + { + "epoch": 0.82, + "grad_norm": 11.83902631776558, + "learning_rate": 2e-05, + "loss": 0.4132, + "step": 205 + }, + { + "epoch": 0.84, + "grad_norm": 19.70511531848034, + "learning_rate": 2e-05, + "loss": 0.5426, + "step": 210 + }, + { + "epoch": 0.86, + "grad_norm": 16.283872444359304, + "learning_rate": 2e-05, + "loss": 0.4625, + "step": 215 + }, + { + "epoch": 0.88, + "grad_norm": 11.310750776722527, + "learning_rate": 2e-05, + "loss": 0.6134, + "step": 220 + }, + { + "epoch": 0.9, + "grad_norm": 10.965542860625407, + "learning_rate": 2e-05, + "loss": 0.5924, + "step": 225 + }, + { + "epoch": 0.92, + "grad_norm": 13.517564564054656, + "learning_rate": 2e-05, + "loss": 0.6286, + "step": 230 + }, + { + "epoch": 0.94, + "grad_norm": 34.26880432074886, + "learning_rate": 2e-05, + "loss": 0.4085, + "step": 235 + }, + { + "epoch": 0.96, + "grad_norm": 25.030865721860277, + "learning_rate": 2e-05, + "loss": 0.3896, + "step": 240 + }, + { + "epoch": 0.98, + "grad_norm": 25.98960849665949, + "learning_rate": 2e-05, + "loss": 0.7899, + "step": 245 + }, + { + "epoch": 1.0, + "grad_norm": 8.864625940315946, + "learning_rate": 2e-05, + "loss": 0.4402, + "step": 250 + }, + { + "epoch": 1.02, + "grad_norm": 11.40545315116504, + "learning_rate": 2e-05, + "loss": 0.3358, + "step": 255 + }, + { + "epoch": 1.04, + "grad_norm": 13.463916057621617, + "learning_rate": 2e-05, + "loss": 0.3494, + "step": 260 + }, + { + "epoch": 1.06, + "grad_norm": 9.782398722159707, + "learning_rate": 2e-05, + "loss": 0.323, + "step": 265 + }, + { + "epoch": 1.08, + "grad_norm": 13.317644626850393, + "learning_rate": 2e-05, + "loss": 0.3282, + "step": 270 + }, + { + "epoch": 1.1, + "grad_norm": 5.139859271115599, + "learning_rate": 2e-05, + "loss": 0.2077, + "step": 275 + }, + { + "epoch": 1.12, + "grad_norm": 7.631702619157663, + "learning_rate": 2e-05, + "loss": 0.2774, + "step": 280 + }, + { + "epoch": 1.1400000000000001, + "grad_norm": 5.33820682349548, + "learning_rate": 2e-05, + "loss": 0.1876, + "step": 285 + }, + { + "epoch": 1.16, + "grad_norm": 17.796618873954458, + "learning_rate": 2e-05, + "loss": 0.2024, + "step": 290 + }, + { + "epoch": 1.18, + "grad_norm": 7.742739766893884, + "learning_rate": 2e-05, + "loss": 0.2382, + "step": 295 + }, + { + "epoch": 1.2, + "grad_norm": 12.272583734681321, + "learning_rate": 2e-05, + "loss": 0.1758, + "step": 300 + }, + { + "epoch": 1.22, + "grad_norm": 15.072772862067511, + "learning_rate": 2e-05, + "loss": 0.162, + "step": 305 + }, + { + "epoch": 1.24, + "grad_norm": 12.379175079681959, + "learning_rate": 2e-05, + "loss": 0.3106, + "step": 310 + }, + { + "epoch": 1.26, + "grad_norm": 33.48507360806824, + "learning_rate": 2e-05, + "loss": 0.1663, + "step": 315 + }, + { + "epoch": 1.28, + "grad_norm": 15.999333486664096, + "learning_rate": 2e-05, + "loss": 0.4353, + "step": 320 + }, + { + "epoch": 1.3, + "grad_norm": 14.39207981694989, + "learning_rate": 2e-05, + "loss": 0.3389, + "step": 325 + }, + { + "epoch": 1.32, + "grad_norm": 13.332999614759036, + "learning_rate": 2e-05, + "loss": 0.4599, + "step": 330 + }, + { + "epoch": 1.34, + "grad_norm": 23.928605991003675, + "learning_rate": 2e-05, + "loss": 0.2329, + "step": 335 + }, + { + "epoch": 1.3599999999999999, + "grad_norm": 13.34758642775842, + "learning_rate": 2e-05, + "loss": 0.2337, + "step": 340 + }, + { + "epoch": 1.38, + "grad_norm": 24.352266155741198, + "learning_rate": 2e-05, + "loss": 0.2545, + "step": 345 + }, + { + "epoch": 1.4, + "grad_norm": 10.093768669427867, + "learning_rate": 2e-05, + "loss": 0.1388, + "step": 350 + }, + { + "epoch": 1.42, + "grad_norm": 32.58466972795229, + "learning_rate": 2e-05, + "loss": 0.3381, + "step": 355 + }, + { + "epoch": 1.44, + "grad_norm": 16.995622901411814, + "learning_rate": 2e-05, + "loss": 0.2648, + "step": 360 + }, + { + "epoch": 1.46, + "grad_norm": 10.97816885532189, + "learning_rate": 2e-05, + "loss": 0.3115, + "step": 365 + }, + { + "epoch": 1.48, + "grad_norm": 11.548897196049536, + "learning_rate": 2e-05, + "loss": 0.2889, + "step": 370 + }, + { + "epoch": 1.5, + "grad_norm": 14.16697968734292, + "learning_rate": 2e-05, + "loss": 0.1862, + "step": 375 + }, + { + "epoch": 1.52, + "grad_norm": 10.212597579637505, + "learning_rate": 2e-05, + "loss": 0.2742, + "step": 380 + }, + { + "epoch": 1.54, + "grad_norm": 8.91459350111025, + "learning_rate": 2e-05, + "loss": 0.1768, + "step": 385 + }, + { + "epoch": 1.56, + "grad_norm": 4.5094557209751125, + "learning_rate": 2e-05, + "loss": 0.2998, + "step": 390 + }, + { + "epoch": 1.58, + "grad_norm": 17.12956574852988, + "learning_rate": 2e-05, + "loss": 0.4823, + "step": 395 + }, + { + "epoch": 1.6, + "grad_norm": 9.24016552408342, + "learning_rate": 2e-05, + "loss": 0.3929, + "step": 400 + }, + { + "epoch": 1.62, + "grad_norm": 1.7011726405852587, + "learning_rate": 2e-05, + "loss": 0.0779, + "step": 405 + }, + { + "epoch": 1.6400000000000001, + "grad_norm": 5.402131687184834, + "learning_rate": 2e-05, + "loss": 0.2897, + "step": 410 + }, + { + "epoch": 1.6600000000000001, + "grad_norm": 41.449093332441706, + "learning_rate": 2e-05, + "loss": 0.2473, + "step": 415 + }, + { + "epoch": 1.6800000000000002, + "grad_norm": 6.669376800386209, + "learning_rate": 2e-05, + "loss": 0.3655, + "step": 420 + }, + { + "epoch": 1.7, + "grad_norm": 8.23518921357868, + "learning_rate": 2e-05, + "loss": 0.3253, + "step": 425 + }, + { + "epoch": 1.72, + "grad_norm": 9.034537410146203, + "learning_rate": 2e-05, + "loss": 0.296, + "step": 430 + }, + { + "epoch": 1.74, + "grad_norm": 11.56008324710057, + "learning_rate": 2e-05, + "loss": 0.3163, + "step": 435 + }, + { + "epoch": 1.76, + "grad_norm": 5.894931150739263, + "learning_rate": 2e-05, + "loss": 0.3091, + "step": 440 + }, + { + "epoch": 1.78, + "grad_norm": 7.0458502125313345, + "learning_rate": 2e-05, + "loss": 0.2953, + "step": 445 + }, + { + "epoch": 1.8, + "grad_norm": 6.778888500945086, + "learning_rate": 2e-05, + "loss": 0.3389, + "step": 450 + }, + { + "epoch": 1.8199999999999998, + "grad_norm": 5.539170431035288, + "learning_rate": 2e-05, + "loss": 0.435, + "step": 455 + }, + { + "epoch": 1.8399999999999999, + "grad_norm": 3.343648740799574, + "learning_rate": 2e-05, + "loss": 0.2393, + "step": 460 + }, + { + "epoch": 1.8599999999999999, + "grad_norm": 12.183313738430767, + "learning_rate": 2e-05, + "loss": 0.2175, + "step": 465 + }, + { + "epoch": 1.88, + "grad_norm": 12.811874616374048, + "learning_rate": 2e-05, + "loss": 0.3642, + "step": 470 + }, + { + "epoch": 1.9, + "grad_norm": 9.28274328738779, + "learning_rate": 2e-05, + "loss": 0.2358, + "step": 475 + }, + { + "epoch": 1.92, + "grad_norm": 3.6965502254399536, + "learning_rate": 2e-05, + "loss": 0.1731, + "step": 480 + }, + { + "epoch": 1.94, + "grad_norm": 23.422711462644386, + "learning_rate": 2e-05, + "loss": 0.2284, + "step": 485 + }, + { + "epoch": 1.96, + "grad_norm": 6.007651568580575, + "learning_rate": 2e-05, + "loss": 0.2029, + "step": 490 + }, + { + "epoch": 1.98, + "grad_norm": 22.857478600516423, + "learning_rate": 2e-05, + "loss": 0.2268, + "step": 495 + }, + { + "epoch": 2.0, + "grad_norm": 7.607530663493723, + "learning_rate": 2e-05, + "loss": 0.396, + "step": 500 + } + ], + "logging_steps": 5, + "max_steps": 500, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 250, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 268959744000.0, + "train_batch_size": 1, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_3b_base_500/checkpoint-500/training_args.bin b/specialized_llm_3b_base_500/checkpoint-500/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..2f90e30f5b0b8c99c2f8b4a3cb8438a106d13a7c --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:32f6fe8f63de2c7afa6612ef92d6e28ae8fc8406b156493717aa2a6d5e0508cb +size 8760 diff --git a/specialized_llm_3b_base_500/checkpoint-500/zero_to_fp32.py b/specialized_llm_3b_base_500/checkpoint-500/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_3b_base_500/checkpoint-500/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_3b_base_5000/checkpoint-157/config.json b/specialized_llm_3b_base_5000/checkpoint-157/config.json new file mode 100644 index 0000000000000000000000000000000000000000..3e1d47b9c28f155b84127d51a1458101e38a94da --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-3B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 128, + "hidden_act": "silu", + "hidden_size": 3072, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 24, + "num_hidden_layers": 28, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_3b_base_5000/checkpoint-157/generation_config.json b/specialized_llm_3b_base_5000/checkpoint-157/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_3b_base_5000/checkpoint-157/latest b/specialized_llm_3b_base_5000/checkpoint-157/latest new file mode 100644 index 0000000000000000000000000000000000000000..47fa3d261fa7445a0b517686f5e796c93b00b08f --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/latest @@ -0,0 +1 @@ +global_step157 \ No newline at end of file diff --git a/specialized_llm_3b_base_5000/checkpoint-157/model-00001-of-00002.safetensors b/specialized_llm_3b_base_5000/checkpoint-157/model-00001-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..0a79506d1e6fbcd7bedc57242278d9638a9ae16c --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/model-00001-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:883d9a0d1c1923a6a5c28c1da05593d14c7e192b448413e622cfbdb726bc44b9 +size 4965811384 diff --git a/specialized_llm_3b_base_5000/checkpoint-157/model-00002-of-00002.safetensors b/specialized_llm_3b_base_5000/checkpoint-157/model-00002-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..3e84a5b8cd64d64c6116f09549e33adedd8b2e68 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/model-00002-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2199af33228ab8239b6c23c71e31de1a86fbd592fac69b3aefe8779c4f5769e0 +size 1459729952 diff --git a/specialized_llm_3b_base_5000/checkpoint-157/model.safetensors.index.json b/specialized_llm_3b_base_5000/checkpoint-157/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..60dbbe5a4d1d1eb6b7320f138d25b511a94d3eb4 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/model.safetensors.index.json @@ -0,0 +1,261 @@ +{ + "metadata": { + "total_size": 6425511936 + }, + "weight_map": { + "model.embed_tokens.weight": "model-00001-of-00002.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.norm.weight": "model-00002-of-00002.safetensors" + } +} diff --git a/specialized_llm_3b_base_5000/checkpoint-157/rng_state_0.pth b/specialized_llm_3b_base_5000/checkpoint-157/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..b24ba5257472a7c82c4d4247a4c0210ee74f9e61 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4 +size 14512 diff --git a/specialized_llm_3b_base_5000/checkpoint-157/rng_state_1.pth b/specialized_llm_3b_base_5000/checkpoint-157/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..9350a8206512bf8b857f4064425716468c2b7465 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6 +size 14512 diff --git a/specialized_llm_3b_base_5000/checkpoint-157/scheduler.pt b/specialized_llm_3b_base_5000/checkpoint-157/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..40415cbfe4e8a20b238fdd0e80cb4741a586ae9c --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:39808648d67ac4ba6c4877e87fe75893a26b564388581db72e20b5c72c8ed9f3 +size 1064 diff --git a/specialized_llm_3b_base_5000/checkpoint-157/special_tokens_map.json b/specialized_llm_3b_base_5000/checkpoint-157/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_3b_base_5000/checkpoint-157/tokenizer.json b/specialized_llm_3b_base_5000/checkpoint-157/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_3b_base_5000/checkpoint-157/tokenizer_config.json b/specialized_llm_3b_base_5000/checkpoint-157/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_3b_base_5000/checkpoint-157/trainer_state.json b/specialized_llm_3b_base_5000/checkpoint-157/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..f7a3d7ded4348ffa095c9219918712b902140bc8 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/trainer_state.json @@ -0,0 +1,250 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 157, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.03184713375796178, + "grad_norm": 40.78604947627245, + "learning_rate": 2e-05, + "loss": 3.5775, + "step": 5 + }, + { + "epoch": 0.06369426751592357, + "grad_norm": 8.368950744101049, + "learning_rate": 2e-05, + "loss": 1.1247, + "step": 10 + }, + { + "epoch": 0.09554140127388536, + "grad_norm": 9.457819678472001, + "learning_rate": 2e-05, + "loss": 0.7369, + "step": 15 + }, + { + "epoch": 0.12738853503184713, + "grad_norm": 5.641687715871123, + "learning_rate": 2e-05, + "loss": 0.5158, + "step": 20 + }, + { + "epoch": 0.1592356687898089, + "grad_norm": 5.418478301114858, + "learning_rate": 2e-05, + "loss": 0.4339, + "step": 25 + }, + { + "epoch": 0.1910828025477707, + "grad_norm": 5.045194163255571, + "learning_rate": 2e-05, + "loss": 0.463, + "step": 30 + }, + { + "epoch": 0.2229299363057325, + "grad_norm": 4.781645335845452, + "learning_rate": 2e-05, + "loss": 0.3769, + "step": 35 + }, + { + "epoch": 0.25477707006369427, + "grad_norm": 5.347347835798862, + "learning_rate": 2e-05, + "loss": 0.3619, + "step": 40 + }, + { + "epoch": 0.28662420382165604, + "grad_norm": 4.246397453328318, + "learning_rate": 2e-05, + "loss": 0.3027, + "step": 45 + }, + { + "epoch": 0.3184713375796178, + "grad_norm": 4.33165925517153, + "learning_rate": 2e-05, + "loss": 0.2415, + "step": 50 + }, + { + "epoch": 0.3503184713375796, + "grad_norm": 3.844921413622979, + "learning_rate": 2e-05, + "loss": 0.2504, + "step": 55 + }, + { + "epoch": 0.3821656050955414, + "grad_norm": 6.45954282043095, + "learning_rate": 2e-05, + "loss": 0.2317, + "step": 60 + }, + { + "epoch": 0.4140127388535032, + "grad_norm": 4.385098986777501, + "learning_rate": 2e-05, + "loss": 0.2197, + "step": 65 + }, + { + "epoch": 0.445859872611465, + "grad_norm": 4.208753643886586, + "learning_rate": 2e-05, + "loss": 0.2132, + "step": 70 + }, + { + "epoch": 0.47770700636942676, + "grad_norm": 2.771863737776465, + "learning_rate": 2e-05, + "loss": 0.2171, + "step": 75 + }, + { + "epoch": 0.5095541401273885, + "grad_norm": 2.34352087689591, + "learning_rate": 2e-05, + "loss": 0.2368, + "step": 80 + }, + { + "epoch": 0.5414012738853503, + "grad_norm": 2.837909679350126, + "learning_rate": 2e-05, + "loss": 0.2246, + "step": 85 + }, + { + "epoch": 0.5732484076433121, + "grad_norm": 4.432629271419918, + "learning_rate": 2e-05, + "loss": 0.2425, + "step": 90 + }, + { + "epoch": 0.6050955414012739, + "grad_norm": 2.0628378042750244, + "learning_rate": 2e-05, + "loss": 0.2084, + "step": 95 + }, + { + "epoch": 0.6369426751592356, + "grad_norm": 3.2999762267826993, + "learning_rate": 2e-05, + "loss": 0.1822, + "step": 100 + }, + { + "epoch": 0.6687898089171974, + "grad_norm": 1.7122002214796863, + "learning_rate": 2e-05, + "loss": 0.1756, + "step": 105 + }, + { + "epoch": 0.7006369426751592, + "grad_norm": 3.2760105813071396, + "learning_rate": 2e-05, + "loss": 0.2213, + "step": 110 + }, + { + "epoch": 0.732484076433121, + "grad_norm": 3.283904309843202, + "learning_rate": 2e-05, + "loss": 0.2022, + "step": 115 + }, + { + "epoch": 0.7643312101910829, + "grad_norm": 2.600480873861268, + "learning_rate": 2e-05, + "loss": 0.2137, + "step": 120 + }, + { + "epoch": 0.7961783439490446, + "grad_norm": 2.81626515746397, + "learning_rate": 2e-05, + "loss": 0.1902, + "step": 125 + }, + { + "epoch": 0.8280254777070064, + "grad_norm": 3.7954679627760846, + "learning_rate": 2e-05, + "loss": 0.1856, + "step": 130 + }, + { + "epoch": 0.8598726114649682, + "grad_norm": 3.872799664454645, + "learning_rate": 2e-05, + "loss": 0.1763, + "step": 135 + }, + { + "epoch": 0.89171974522293, + "grad_norm": 3.284248984016964, + "learning_rate": 2e-05, + "loss": 0.1994, + "step": 140 + }, + { + "epoch": 0.9235668789808917, + "grad_norm": 3.307812812852979, + "learning_rate": 2e-05, + "loss": 0.1542, + "step": 145 + }, + { + "epoch": 0.9554140127388535, + "grad_norm": 3.4547396546144338, + "learning_rate": 2e-05, + "loss": 0.1916, + "step": 150 + }, + { + "epoch": 0.9872611464968153, + "grad_norm": 2.4075546087603814, + "learning_rate": 2e-05, + "loss": 0.1619, + "step": 155 + } + ], + "logging_steps": 5, + "max_steps": 314, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 157, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 1351253753856.0, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_3b_base_5000/checkpoint-157/training_args.bin b/specialized_llm_3b_base_5000/checkpoint-157/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..fd8746b9f622e289e691e06512324e3527a52abd --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7156df4b1d8e1524adac1d5b268f854c4a596e972dc4b975ec1e2fd2e5666cd6 +size 8760 diff --git a/specialized_llm_3b_base_5000/checkpoint-157/zero_to_fp32.py b/specialized_llm_3b_base_5000/checkpoint-157/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-157/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/specialized_llm_3b_base_5000/checkpoint-314/config.json b/specialized_llm_3b_base_5000/checkpoint-314/config.json new file mode 100644 index 0000000000000000000000000000000000000000..3e1d47b9c28f155b84127d51a1458101e38a94da --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/config.json @@ -0,0 +1,36 @@ +{ + "_name_or_path": "/raid/HUB_LLM/Llama-3.2-3B", + "architectures": [ + "LlamaForCausalLM" + ], + "attention_bias": false, + "attention_dropout": 0.0, + "bos_token_id": 128000, + "eos_token_id": 128009, + "head_dim": 128, + "hidden_act": "silu", + "hidden_size": 3072, + "initializer_range": 0.02, + "intermediate_size": 8192, + "max_position_embeddings": 131072, + "mlp_bias": false, + "model_type": "llama", + "num_attention_heads": 24, + "num_hidden_layers": 28, + "num_key_value_heads": 8, + "pretraining_tp": 1, + "rms_norm_eps": 1e-05, + "rope_scaling": { + "factor": 32.0, + "high_freq_factor": 4.0, + "low_freq_factor": 1.0, + "original_max_position_embeddings": 8192, + "rope_type": "llama3" + }, + "rope_theta": 500000.0, + "tie_word_embeddings": true, + "torch_dtype": "bfloat16", + "transformers_version": "4.47.1", + "use_cache": false, + "vocab_size": 128258 +} diff --git a/specialized_llm_3b_base_5000/checkpoint-314/generation_config.json b/specialized_llm_3b_base_5000/checkpoint-314/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..41de1af1b10386ca8193ae61bdb014263a2402e1 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/generation_config.json @@ -0,0 +1,9 @@ +{ + "_from_model_config": true, + "bos_token_id": 128000, + "do_sample": true, + "eos_token_id": 128001, + "temperature": 0.6, + "top_p": 0.9, + "transformers_version": "4.47.1" +} diff --git a/specialized_llm_3b_base_5000/checkpoint-314/latest b/specialized_llm_3b_base_5000/checkpoint-314/latest new file mode 100644 index 0000000000000000000000000000000000000000..a9786513b1a514db2c3a9da7408844635663d55d --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/latest @@ -0,0 +1 @@ +global_step314 \ No newline at end of file diff --git a/specialized_llm_3b_base_5000/checkpoint-314/model-00001-of-00002.safetensors b/specialized_llm_3b_base_5000/checkpoint-314/model-00001-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..0f2c0b78ef387f2a984e102ae192404ae8a6059b --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/model-00001-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a10957d6f24e00f38f1f277ddfd8ee49afabb64b4755a18d8c3602346e70b691 +size 4965811384 diff --git a/specialized_llm_3b_base_5000/checkpoint-314/model-00002-of-00002.safetensors b/specialized_llm_3b_base_5000/checkpoint-314/model-00002-of-00002.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..895d85636ed4f23a2a32737747952fcd45d734a7 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/model-00002-of-00002.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0b841da9184141ce705f120cbe1113a5b1cbad1a0cb6f9533cda1e8cc2ca512d +size 1459729952 diff --git a/specialized_llm_3b_base_5000/checkpoint-314/model.safetensors.index.json b/specialized_llm_3b_base_5000/checkpoint-314/model.safetensors.index.json new file mode 100644 index 0000000000000000000000000000000000000000..60dbbe5a4d1d1eb6b7320f138d25b511a94d3eb4 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/model.safetensors.index.json @@ -0,0 +1,261 @@ +{ + "metadata": { + "total_size": 6425511936 + }, + "weight_map": { + "model.embed_tokens.weight": "model-00001-of-00002.safetensors", + "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", + "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", + "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", + "model.norm.weight": "model-00002-of-00002.safetensors" + } +} diff --git a/specialized_llm_3b_base_5000/checkpoint-314/rng_state_0.pth b/specialized_llm_3b_base_5000/checkpoint-314/rng_state_0.pth new file mode 100644 index 0000000000000000000000000000000000000000..d46a9ba7690e83fef48d0cf5f4c34bd9df6cc737 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/rng_state_0.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6cb795a5cea0baa625c50007a6c9da09c6bbb5c16b560424070384a479e7d8a6 +size 14512 diff --git a/specialized_llm_3b_base_5000/checkpoint-314/rng_state_1.pth b/specialized_llm_3b_base_5000/checkpoint-314/rng_state_1.pth new file mode 100644 index 0000000000000000000000000000000000000000..23784d04394ff924f7fca03236f62241ce5f4b6e --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/rng_state_1.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f19604377bd828eb366c68946ad997a4ff4d69beaeea93ee58915135768ec63 +size 14512 diff --git a/specialized_llm_3b_base_5000/checkpoint-314/scheduler.pt b/specialized_llm_3b_base_5000/checkpoint-314/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..e39d80394b06b5f30dd5d68f240cb914854938ba --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:81861f3d009fd36f92297f0e1f8859834371892318cd1803dcd46682cde34e17 +size 1064 diff --git a/specialized_llm_3b_base_5000/checkpoint-314/special_tokens_map.json b/specialized_llm_3b_base_5000/checkpoint-314/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..278b7f0f84be865c4687700ee7b3c63d89a51e18 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/special_tokens_map.json @@ -0,0 +1,23 @@ +{ + "bos_token": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/specialized_llm_3b_base_5000/checkpoint-314/tokenizer.json b/specialized_llm_3b_base_5000/checkpoint-314/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..6e49f672e2d65d9cdecbfa9235a4103b9a6061ff --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2c676f06247664a1426e3698a468d2a1c7836a9f5b4d5548caf880332775c16 +size 17210468 diff --git a/specialized_llm_3b_base_5000/checkpoint-314/tokenizer_config.json b/specialized_llm_3b_base_5000/checkpoint-314/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..588e5a797871af24556fb4014cdeb5161fd254fc --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/tokenizer_config.json @@ -0,0 +1,2088 @@ +{ + "added_tokens_decoder": { + "93": { + "content": "~", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128000": { + "content": "<|begin_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128001": { + "content": "<|end_of_text|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128002": { + "content": "<|reserved_special_token_0|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128003": { + "content": "<|reserved_special_token_1|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128004": { + "content": "<|finetune_right_pad_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128005": { + "content": "<|reserved_special_token_2|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128006": { + "content": "<|start_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128007": { + "content": "<|end_header_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128008": { + "content": "<|eom_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128009": { + "content": "<|eot_id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128010": { + "content": "<|python_tag|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128011": { + "content": "<|reserved_special_token_3|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128012": { + "content": "<|reserved_special_token_4|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128013": { + "content": "<|reserved_special_token_5|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128014": { + "content": "<|reserved_special_token_6|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128015": { + "content": "<|reserved_special_token_7|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128016": { + "content": "<|reserved_special_token_8|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128017": { + "content": "<|reserved_special_token_9|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128018": { + "content": "<|reserved_special_token_10|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128019": { + "content": "<|reserved_special_token_11|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128020": { + "content": "<|reserved_special_token_12|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128021": { + "content": "<|reserved_special_token_13|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128022": { + "content": "<|reserved_special_token_14|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128023": { + "content": "<|reserved_special_token_15|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128024": { + "content": "<|reserved_special_token_16|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128025": { + "content": "<|reserved_special_token_17|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128026": { + "content": "<|reserved_special_token_18|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128027": { + "content": "<|reserved_special_token_19|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128028": { + "content": "<|reserved_special_token_20|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128029": { + "content": "<|reserved_special_token_21|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128030": { + "content": "<|reserved_special_token_22|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128031": { + "content": "<|reserved_special_token_23|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128032": { + "content": "<|reserved_special_token_24|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128033": { + "content": "<|reserved_special_token_25|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128034": { + "content": "<|reserved_special_token_26|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128035": { + "content": "<|reserved_special_token_27|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128036": { + "content": "<|reserved_special_token_28|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128037": { + "content": "<|reserved_special_token_29|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128038": { + "content": "<|reserved_special_token_30|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128039": { + "content": "<|reserved_special_token_31|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128040": { + "content": "<|reserved_special_token_32|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128041": { + "content": "<|reserved_special_token_33|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128042": { + "content": "<|reserved_special_token_34|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128043": { + "content": "<|reserved_special_token_35|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128044": { + "content": "<|reserved_special_token_36|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128045": { + "content": "<|reserved_special_token_37|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128046": { + "content": "<|reserved_special_token_38|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128047": { + "content": "<|reserved_special_token_39|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128048": { + "content": "<|reserved_special_token_40|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128049": { + "content": "<|reserved_special_token_41|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128050": { + "content": "<|reserved_special_token_42|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128051": { + "content": "<|reserved_special_token_43|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128052": { + "content": "<|reserved_special_token_44|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128053": { + "content": "<|reserved_special_token_45|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128054": { + "content": "<|reserved_special_token_46|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128055": { + "content": "<|reserved_special_token_47|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128056": { + "content": "<|reserved_special_token_48|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128057": { + "content": "<|reserved_special_token_49|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128058": { + "content": "<|reserved_special_token_50|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128059": { + "content": "<|reserved_special_token_51|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128060": { + "content": "<|reserved_special_token_52|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128061": { + "content": "<|reserved_special_token_53|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128062": { + "content": "<|reserved_special_token_54|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128063": { + "content": "<|reserved_special_token_55|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128064": { + "content": "<|reserved_special_token_56|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128065": { + "content": "<|reserved_special_token_57|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128066": { + "content": "<|reserved_special_token_58|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128067": { + "content": "<|reserved_special_token_59|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128068": { + "content": "<|reserved_special_token_60|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128069": { + "content": "<|reserved_special_token_61|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128070": { + "content": "<|reserved_special_token_62|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128071": { + "content": "<|reserved_special_token_63|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128072": { + "content": "<|reserved_special_token_64|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128073": { + "content": "<|reserved_special_token_65|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128074": { + "content": "<|reserved_special_token_66|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128075": { + "content": "<|reserved_special_token_67|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128076": { + "content": "<|reserved_special_token_68|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128077": { + "content": "<|reserved_special_token_69|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128078": { + "content": "<|reserved_special_token_70|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128079": { + "content": "<|reserved_special_token_71|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128080": { + "content": "<|reserved_special_token_72|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128081": { + "content": "<|reserved_special_token_73|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128082": { + "content": "<|reserved_special_token_74|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128083": { + "content": "<|reserved_special_token_75|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128084": { + "content": "<|reserved_special_token_76|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128085": { + "content": "<|reserved_special_token_77|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128086": { + "content": "<|reserved_special_token_78|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128087": { + "content": "<|reserved_special_token_79|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128088": { + "content": "<|reserved_special_token_80|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128089": { + "content": "<|reserved_special_token_81|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128090": { + "content": "<|reserved_special_token_82|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128091": { + "content": "<|reserved_special_token_83|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128092": { + "content": "<|reserved_special_token_84|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128093": { + "content": "<|reserved_special_token_85|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128094": { + "content": "<|reserved_special_token_86|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128095": { + "content": "<|reserved_special_token_87|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128096": { + "content": "<|reserved_special_token_88|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128097": { + "content": "<|reserved_special_token_89|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128098": { + "content": "<|reserved_special_token_90|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128099": { + "content": "<|reserved_special_token_91|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128100": { + "content": "<|reserved_special_token_92|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128101": { + "content": "<|reserved_special_token_93|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128102": { + "content": "<|reserved_special_token_94|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128103": { + "content": "<|reserved_special_token_95|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128104": { + "content": "<|reserved_special_token_96|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128105": { + "content": "<|reserved_special_token_97|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128106": { + "content": "<|reserved_special_token_98|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128107": { + "content": "<|reserved_special_token_99|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128108": { + "content": "<|reserved_special_token_100|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128109": { + "content": "<|reserved_special_token_101|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128110": { + "content": "<|reserved_special_token_102|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128111": { + "content": "<|reserved_special_token_103|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128112": { + "content": "<|reserved_special_token_104|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128113": { + "content": "<|reserved_special_token_105|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128114": { + "content": "<|reserved_special_token_106|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128115": { + "content": "<|reserved_special_token_107|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128116": { + "content": "<|reserved_special_token_108|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128117": { + "content": "<|reserved_special_token_109|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128118": { + "content": "<|reserved_special_token_110|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128119": { + "content": "<|reserved_special_token_111|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128120": { + "content": "<|reserved_special_token_112|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128121": { + "content": "<|reserved_special_token_113|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128122": { + "content": "<|reserved_special_token_114|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128123": { + "content": "<|reserved_special_token_115|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128124": { + "content": "<|reserved_special_token_116|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128125": { + "content": "<|reserved_special_token_117|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128126": { + "content": "<|reserved_special_token_118|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128127": { + "content": "<|reserved_special_token_119|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128128": { + "content": "<|reserved_special_token_120|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128129": { + "content": "<|reserved_special_token_121|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128130": { + "content": "<|reserved_special_token_122|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128131": { + "content": "<|reserved_special_token_123|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128132": { + "content": "<|reserved_special_token_124|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128133": { + "content": "<|reserved_special_token_125|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128134": { + "content": "<|reserved_special_token_126|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128135": { + "content": "<|reserved_special_token_127|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128136": { + "content": "<|reserved_special_token_128|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128137": { + "content": "<|reserved_special_token_129|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128138": { + "content": "<|reserved_special_token_130|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128139": { + "content": "<|reserved_special_token_131|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128140": { + "content": "<|reserved_special_token_132|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128141": { + "content": "<|reserved_special_token_133|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128142": { + "content": "<|reserved_special_token_134|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128143": { + "content": "<|reserved_special_token_135|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128144": { + "content": "<|reserved_special_token_136|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128145": { + "content": "<|reserved_special_token_137|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128146": { + "content": "<|reserved_special_token_138|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128147": { + "content": "<|reserved_special_token_139|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128148": { + "content": "<|reserved_special_token_140|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128149": { + "content": "<|reserved_special_token_141|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128150": { + "content": "<|reserved_special_token_142|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128151": { + "content": "<|reserved_special_token_143|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128152": { + "content": "<|reserved_special_token_144|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128153": { + "content": "<|reserved_special_token_145|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128154": { + "content": "<|reserved_special_token_146|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128155": { + "content": "<|reserved_special_token_147|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128156": { + "content": "<|reserved_special_token_148|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128157": { + "content": "<|reserved_special_token_149|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128158": { + "content": "<|reserved_special_token_150|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128159": { + "content": "<|reserved_special_token_151|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128160": { + "content": "<|reserved_special_token_152|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128161": { + "content": "<|reserved_special_token_153|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128162": { + "content": "<|reserved_special_token_154|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128163": { + "content": "<|reserved_special_token_155|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128164": { + "content": "<|reserved_special_token_156|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128165": { + "content": "<|reserved_special_token_157|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128166": { + "content": "<|reserved_special_token_158|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128167": { + "content": "<|reserved_special_token_159|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128168": { + "content": "<|reserved_special_token_160|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128169": { + "content": "<|reserved_special_token_161|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128170": { + "content": "<|reserved_special_token_162|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128171": { + "content": "<|reserved_special_token_163|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128172": { + "content": "<|reserved_special_token_164|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128173": { + "content": "<|reserved_special_token_165|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128174": { + "content": "<|reserved_special_token_166|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128175": { + "content": "<|reserved_special_token_167|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128176": { + "content": "<|reserved_special_token_168|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128177": { + "content": "<|reserved_special_token_169|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128178": { + "content": "<|reserved_special_token_170|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128179": { + "content": "<|reserved_special_token_171|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128180": { + "content": "<|reserved_special_token_172|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128181": { + "content": "<|reserved_special_token_173|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128182": { + "content": "<|reserved_special_token_174|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128183": { + "content": "<|reserved_special_token_175|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128184": { + "content": "<|reserved_special_token_176|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128185": { + "content": "<|reserved_special_token_177|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128186": { + "content": "<|reserved_special_token_178|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128187": { + "content": "<|reserved_special_token_179|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128188": { + "content": "<|reserved_special_token_180|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128189": { + "content": "<|reserved_special_token_181|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128190": { + "content": "<|reserved_special_token_182|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128191": { + "content": "<|reserved_special_token_183|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128192": { + "content": "<|reserved_special_token_184|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128193": { + "content": "<|reserved_special_token_185|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128194": { + "content": "<|reserved_special_token_186|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128195": { + "content": "<|reserved_special_token_187|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128196": { + "content": "<|reserved_special_token_188|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128197": { + "content": "<|reserved_special_token_189|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128198": { + "content": "<|reserved_special_token_190|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128199": { + "content": "<|reserved_special_token_191|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128200": { + "content": "<|reserved_special_token_192|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128201": { + "content": "<|reserved_special_token_193|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128202": { + "content": "<|reserved_special_token_194|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128203": { + "content": "<|reserved_special_token_195|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128204": { + "content": "<|reserved_special_token_196|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128205": { + "content": "<|reserved_special_token_197|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128206": { + "content": "<|reserved_special_token_198|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128207": { + "content": "<|reserved_special_token_199|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128208": { + "content": "<|reserved_special_token_200|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128209": { + "content": "<|reserved_special_token_201|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128210": { + "content": "<|reserved_special_token_202|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128211": { + "content": "<|reserved_special_token_203|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128212": { + "content": "<|reserved_special_token_204|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128213": { + "content": "<|reserved_special_token_205|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128214": { + "content": "<|reserved_special_token_206|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128215": { + "content": "<|reserved_special_token_207|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128216": { + "content": "<|reserved_special_token_208|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128217": { + "content": "<|reserved_special_token_209|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128218": { + "content": "<|reserved_special_token_210|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128219": { + "content": "<|reserved_special_token_211|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128220": { + "content": "<|reserved_special_token_212|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128221": { + "content": "<|reserved_special_token_213|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128222": { + "content": "<|reserved_special_token_214|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128223": { + "content": "<|reserved_special_token_215|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128224": { + "content": "<|reserved_special_token_216|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128225": { + "content": "<|reserved_special_token_217|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128226": { + "content": "<|reserved_special_token_218|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128227": { + "content": "<|reserved_special_token_219|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128228": { + "content": "<|reserved_special_token_220|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128229": { + "content": "<|reserved_special_token_221|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128230": { + "content": "<|reserved_special_token_222|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128231": { + "content": "<|reserved_special_token_223|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128232": { + "content": "<|reserved_special_token_224|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128233": { + "content": "<|reserved_special_token_225|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128234": { + "content": "<|reserved_special_token_226|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128235": { + "content": "<|reserved_special_token_227|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128236": { + "content": "<|reserved_special_token_228|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128237": { + "content": "<|reserved_special_token_229|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128238": { + "content": "<|reserved_special_token_230|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128239": { + "content": "<|reserved_special_token_231|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128240": { + "content": "<|reserved_special_token_232|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128241": { + "content": "<|reserved_special_token_233|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128242": { + "content": "<|reserved_special_token_234|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128243": { + "content": "<|reserved_special_token_235|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128244": { + "content": "<|reserved_special_token_236|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128245": { + "content": "<|reserved_special_token_237|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128246": { + "content": "<|reserved_special_token_238|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128247": { + "content": "<|reserved_special_token_239|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128248": { + "content": "<|reserved_special_token_240|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128249": { + "content": "<|reserved_special_token_241|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128250": { + "content": "<|reserved_special_token_242|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128251": { + "content": "<|reserved_special_token_243|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128252": { + "content": "<|reserved_special_token_244|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128253": { + "content": "<|reserved_special_token_245|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128254": { + "content": "<|reserved_special_token_246|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128255": { + "content": "<|reserved_special_token_247|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "128256": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + }, + "128257": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "bos_token": "<|begin_of_text|>", + "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", + "clean_up_tokenization_spaces": true, + "eos_token": "<|eot_id|>", + "extra_special_tokens": {}, + "model_input_names": [ + "input_ids", + "attention_mask" + ], + "model_max_length": 131072, + "pad_token": "<|end_of_text|>", + "tokenizer_class": "PreTrainedTokenizerFast" +} diff --git a/specialized_llm_3b_base_5000/checkpoint-314/trainer_state.json b/specialized_llm_3b_base_5000/checkpoint-314/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..2b3a77c012d21c97563397242fdf68187800ccf7 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/trainer_state.json @@ -0,0 +1,467 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 2.0, + "eval_steps": 500, + "global_step": 314, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.03184713375796178, + "grad_norm": 40.78604947627245, + "learning_rate": 2e-05, + "loss": 3.5775, + "step": 5 + }, + { + "epoch": 0.06369426751592357, + "grad_norm": 8.368950744101049, + "learning_rate": 2e-05, + "loss": 1.1247, + "step": 10 + }, + { + "epoch": 0.09554140127388536, + "grad_norm": 9.457819678472001, + "learning_rate": 2e-05, + "loss": 0.7369, + "step": 15 + }, + { + "epoch": 0.12738853503184713, + "grad_norm": 5.641687715871123, + "learning_rate": 2e-05, + "loss": 0.5158, + "step": 20 + }, + { + "epoch": 0.1592356687898089, + "grad_norm": 5.418478301114858, + "learning_rate": 2e-05, + "loss": 0.4339, + "step": 25 + }, + { + "epoch": 0.1910828025477707, + "grad_norm": 5.045194163255571, + "learning_rate": 2e-05, + "loss": 0.463, + "step": 30 + }, + { + "epoch": 0.2229299363057325, + "grad_norm": 4.781645335845452, + "learning_rate": 2e-05, + "loss": 0.3769, + "step": 35 + }, + { + "epoch": 0.25477707006369427, + "grad_norm": 5.347347835798862, + "learning_rate": 2e-05, + "loss": 0.3619, + "step": 40 + }, + { + "epoch": 0.28662420382165604, + "grad_norm": 4.246397453328318, + "learning_rate": 2e-05, + "loss": 0.3027, + "step": 45 + }, + { + "epoch": 0.3184713375796178, + "grad_norm": 4.33165925517153, + "learning_rate": 2e-05, + "loss": 0.2415, + "step": 50 + }, + { + "epoch": 0.3503184713375796, + "grad_norm": 3.844921413622979, + "learning_rate": 2e-05, + "loss": 0.2504, + "step": 55 + }, + { + "epoch": 0.3821656050955414, + "grad_norm": 6.45954282043095, + "learning_rate": 2e-05, + "loss": 0.2317, + "step": 60 + }, + { + "epoch": 0.4140127388535032, + "grad_norm": 4.385098986777501, + "learning_rate": 2e-05, + "loss": 0.2197, + "step": 65 + }, + { + "epoch": 0.445859872611465, + "grad_norm": 4.208753643886586, + "learning_rate": 2e-05, + "loss": 0.2132, + "step": 70 + }, + { + "epoch": 0.47770700636942676, + "grad_norm": 2.771863737776465, + "learning_rate": 2e-05, + "loss": 0.2171, + "step": 75 + }, + { + "epoch": 0.5095541401273885, + "grad_norm": 2.34352087689591, + "learning_rate": 2e-05, + "loss": 0.2368, + "step": 80 + }, + { + "epoch": 0.5414012738853503, + "grad_norm": 2.837909679350126, + "learning_rate": 2e-05, + "loss": 0.2246, + "step": 85 + }, + { + "epoch": 0.5732484076433121, + "grad_norm": 4.432629271419918, + "learning_rate": 2e-05, + "loss": 0.2425, + "step": 90 + }, + { + "epoch": 0.6050955414012739, + "grad_norm": 2.0628378042750244, + "learning_rate": 2e-05, + "loss": 0.2084, + "step": 95 + }, + { + "epoch": 0.6369426751592356, + "grad_norm": 3.2999762267826993, + "learning_rate": 2e-05, + "loss": 0.1822, + "step": 100 + }, + { + "epoch": 0.6687898089171974, + "grad_norm": 1.7122002214796863, + "learning_rate": 2e-05, + "loss": 0.1756, + "step": 105 + }, + { + "epoch": 0.7006369426751592, + "grad_norm": 3.2760105813071396, + "learning_rate": 2e-05, + "loss": 0.2213, + "step": 110 + }, + { + "epoch": 0.732484076433121, + "grad_norm": 3.283904309843202, + "learning_rate": 2e-05, + "loss": 0.2022, + "step": 115 + }, + { + "epoch": 0.7643312101910829, + "grad_norm": 2.600480873861268, + "learning_rate": 2e-05, + "loss": 0.2137, + "step": 120 + }, + { + "epoch": 0.7961783439490446, + "grad_norm": 2.81626515746397, + "learning_rate": 2e-05, + "loss": 0.1902, + "step": 125 + }, + { + "epoch": 0.8280254777070064, + "grad_norm": 3.7954679627760846, + "learning_rate": 2e-05, + "loss": 0.1856, + "step": 130 + }, + { + "epoch": 0.8598726114649682, + "grad_norm": 3.872799664454645, + "learning_rate": 2e-05, + "loss": 0.1763, + "step": 135 + }, + { + "epoch": 0.89171974522293, + "grad_norm": 3.284248984016964, + "learning_rate": 2e-05, + "loss": 0.1994, + "step": 140 + }, + { + "epoch": 0.9235668789808917, + "grad_norm": 3.307812812852979, + "learning_rate": 2e-05, + "loss": 0.1542, + "step": 145 + }, + { + "epoch": 0.9554140127388535, + "grad_norm": 3.4547396546144338, + "learning_rate": 2e-05, + "loss": 0.1916, + "step": 150 + }, + { + "epoch": 0.9872611464968153, + "grad_norm": 2.4075546087603814, + "learning_rate": 2e-05, + "loss": 0.1619, + "step": 155 + }, + { + "epoch": 1.019108280254777, + "grad_norm": 1.647706175151772, + "learning_rate": 2e-05, + "loss": 0.1193, + "step": 160 + }, + { + "epoch": 1.0509554140127388, + "grad_norm": 2.023644719658301, + "learning_rate": 2e-05, + "loss": 0.0982, + "step": 165 + }, + { + "epoch": 1.0828025477707006, + "grad_norm": 2.31298016202094, + "learning_rate": 2e-05, + "loss": 0.1076, + "step": 170 + }, + { + "epoch": 1.1146496815286624, + "grad_norm": 3.1177330537998893, + "learning_rate": 2e-05, + "loss": 0.1043, + "step": 175 + }, + { + "epoch": 1.1464968152866242, + "grad_norm": 2.0318620194736385, + "learning_rate": 2e-05, + "loss": 0.1098, + "step": 180 + }, + { + "epoch": 1.178343949044586, + "grad_norm": 1.8723189582500832, + "learning_rate": 2e-05, + "loss": 0.1077, + "step": 185 + }, + { + "epoch": 1.2101910828025477, + "grad_norm": 1.8173816222586743, + "learning_rate": 2e-05, + "loss": 0.0878, + "step": 190 + }, + { + "epoch": 1.2420382165605095, + "grad_norm": 1.9562933607571518, + "learning_rate": 2e-05, + "loss": 0.1072, + "step": 195 + }, + { + "epoch": 1.2738853503184713, + "grad_norm": 1.727322800396086, + "learning_rate": 2e-05, + "loss": 0.1092, + "step": 200 + }, + { + "epoch": 1.305732484076433, + "grad_norm": 1.8614693734662744, + "learning_rate": 2e-05, + "loss": 0.1104, + "step": 205 + }, + { + "epoch": 1.3375796178343948, + "grad_norm": 1.1917814271310345, + "learning_rate": 2e-05, + "loss": 0.0801, + "step": 210 + }, + { + "epoch": 1.3694267515923566, + "grad_norm": 2.3490229391297817, + "learning_rate": 2e-05, + "loss": 0.0865, + "step": 215 + }, + { + "epoch": 1.4012738853503186, + "grad_norm": 2.353167768601884, + "learning_rate": 2e-05, + "loss": 0.1017, + "step": 220 + }, + { + "epoch": 1.4331210191082802, + "grad_norm": 1.9334989797015238, + "learning_rate": 2e-05, + "loss": 0.1077, + "step": 225 + }, + { + "epoch": 1.4649681528662422, + "grad_norm": 3.117979494089919, + "learning_rate": 2e-05, + "loss": 0.104, + "step": 230 + }, + { + "epoch": 1.4968152866242037, + "grad_norm": 1.5255884501650592, + "learning_rate": 2e-05, + "loss": 0.1059, + "step": 235 + }, + { + "epoch": 1.5286624203821657, + "grad_norm": 3.232967624083442, + "learning_rate": 2e-05, + "loss": 0.1287, + "step": 240 + }, + { + "epoch": 1.5605095541401273, + "grad_norm": 2.159172752729262, + "learning_rate": 2e-05, + "loss": 0.1261, + "step": 245 + }, + { + "epoch": 1.5923566878980893, + "grad_norm": 2.265632275382293, + "learning_rate": 2e-05, + "loss": 0.1144, + "step": 250 + }, + { + "epoch": 1.6242038216560508, + "grad_norm": 1.4487469560262782, + "learning_rate": 2e-05, + "loss": 0.0979, + "step": 255 + }, + { + "epoch": 1.6560509554140128, + "grad_norm": 2.119134977703782, + "learning_rate": 2e-05, + "loss": 0.0959, + "step": 260 + }, + { + "epoch": 1.6878980891719744, + "grad_norm": 2.012372872214993, + "learning_rate": 2e-05, + "loss": 0.0935, + "step": 265 + }, + { + "epoch": 1.7197452229299364, + "grad_norm": 1.903501479994221, + "learning_rate": 2e-05, + "loss": 0.1052, + "step": 270 + }, + { + "epoch": 1.7515923566878981, + "grad_norm": 1.3209208004358894, + "learning_rate": 2e-05, + "loss": 0.1049, + "step": 275 + }, + { + "epoch": 1.78343949044586, + "grad_norm": 1.8426392287716327, + "learning_rate": 2e-05, + "loss": 0.1076, + "step": 280 + }, + { + "epoch": 1.8152866242038217, + "grad_norm": 1.7290464386835456, + "learning_rate": 2e-05, + "loss": 0.114, + "step": 285 + }, + { + "epoch": 1.8471337579617835, + "grad_norm": 1.8841891982633818, + "learning_rate": 2e-05, + "loss": 0.1089, + "step": 290 + }, + { + "epoch": 1.8789808917197452, + "grad_norm": 1.7984664142767979, + "learning_rate": 2e-05, + "loss": 0.1158, + "step": 295 + }, + { + "epoch": 1.910828025477707, + "grad_norm": 1.7696270341848916, + "learning_rate": 2e-05, + "loss": 0.1011, + "step": 300 + }, + { + "epoch": 1.9426751592356688, + "grad_norm": 1.378308282552831, + "learning_rate": 2e-05, + "loss": 0.0949, + "step": 305 + }, + { + "epoch": 1.9745222929936306, + "grad_norm": 1.4334428707330111, + "learning_rate": 2e-05, + "loss": 0.0843, + "step": 310 + } + ], + "logging_steps": 5, + "max_steps": 314, + "num_input_tokens_seen": 0, + "num_train_epochs": 2, + "save_steps": 157, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 2702507507712.0, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +} diff --git a/specialized_llm_3b_base_5000/checkpoint-314/training_args.bin b/specialized_llm_3b_base_5000/checkpoint-314/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..fd8746b9f622e289e691e06512324e3527a52abd --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7156df4b1d8e1524adac1d5b268f854c4a596e972dc4b975ec1e2fd2e5666cd6 +size 8760 diff --git a/specialized_llm_3b_base_5000/checkpoint-314/zero_to_fp32.py b/specialized_llm_3b_base_5000/checkpoint-314/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..0e759146cadd92ddfefab3680146c2bd6a2b5c04 --- /dev/null +++ b/specialized_llm_3b_base_5000/checkpoint-314/zero_to_fp32.py @@ -0,0 +1,760 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters)