--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - quora metrics: - accuracy model-index: - name: qqp_v2 results: - task: name: Text Classification type: text-classification dataset: name: quora type: quora config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9073190036854732 --- # qqp_v2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the quora dataset. It achieves the following results on the evaluation set: - Loss: 0.2537 - Accuracy: 0.9073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2591 | 1.0 | 5054 | 0.2429 | 0.8948 | | 0.186 | 2.0 | 10108 | 0.2342 | 0.9058 | | 0.1349 | 3.0 | 15162 | 0.2537 | 0.9073 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0