Update README.md
Browse files
README.md
CHANGED
@@ -32,7 +32,78 @@ We continue to expand [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-lla
|
|
32 |
|
33 |
## How to Get Started with the Model
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
## Training process
|
38 |
**Training Metrics Image**: Below is a snapshot of the training loss curve visualized.
|
|
|
32 |
|
33 |
## How to Get Started with the Model
|
34 |
|
35 |
+
```
|
36 |
+
import torch
|
37 |
+
import torchaudio
|
38 |
+
from encodec import EncodecModel
|
39 |
+
from encodec.utils import convert_audio
|
40 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
41 |
+
|
42 |
+
# Audio to Sound Tokens
|
43 |
+
def audio_to_sound_tokens(audio_path, target_bandwidth=1.5, device="cuda"):
|
44 |
+
model = EncodecModel.encodec_model_24khz()
|
45 |
+
model.set_target_bandwidth(target_bandwidth)
|
46 |
+
model.to(device)
|
47 |
+
|
48 |
+
wav, sr = torchaudio.load(audio_path)
|
49 |
+
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
|
50 |
+
wav = wav.unsqueeze(0).to(device)
|
51 |
+
|
52 |
+
with torch.no_grad():
|
53 |
+
encoded_frames = model.encode(wav)
|
54 |
+
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1)
|
55 |
+
|
56 |
+
audio_code1, audio_code2 = codes[0][0], codes[0][1]
|
57 |
+
flatten_tokens = torch.stack((audio_code1, audio_code2), dim=1).flatten().tolist()
|
58 |
+
|
59 |
+
result = ''.join(f'<|sound_{num}|>' for num in flatten_tokens)
|
60 |
+
return f'<|sound_start|>{result}<|sound_end|>'
|
61 |
+
|
62 |
+
# LLM Pipeline Setup
|
63 |
+
def setup_pipeline(model_path, use_4bit=True):
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
65 |
+
|
66 |
+
model_kwargs = {"device_map": "auto"}
|
67 |
+
if use_4bit:
|
68 |
+
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
69 |
+
load_in_4bit=True,
|
70 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
71 |
+
bnb_4bit_use_double_quant=True,
|
72 |
+
bnb_4bit_quant_type="nf4",
|
73 |
+
)
|
74 |
+
|
75 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
|
76 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
77 |
+
|
78 |
+
# Text Generation
|
79 |
+
def generate_text(pipe, messages, max_new_tokens=64, temperature=0.0, do_sample=False):
|
80 |
+
generation_args = {
|
81 |
+
"max_new_tokens": max_new_tokens,
|
82 |
+
"return_full_text": False,
|
83 |
+
"temperature": temperature,
|
84 |
+
"do_sample": do_sample,
|
85 |
+
}
|
86 |
+
output = pipe(messages, **generation_args)
|
87 |
+
return output[0]['generated_text']
|
88 |
+
|
89 |
+
# Main process
|
90 |
+
def audio_to_text(audio_path, model_path, use_4bit=True):
|
91 |
+
# Convert audio to sound tokens
|
92 |
+
sound_tokens = audio_to_sound_tokens(audio_path)
|
93 |
+
|
94 |
+
# Setup LLM pipeline
|
95 |
+
pipe = setup_pipeline(model_path, use_4bit)
|
96 |
+
|
97 |
+
# Generate text
|
98 |
+
messages = [{"role": "user", "content": sound_tokens}]
|
99 |
+
return generate_text(pipe, messages)
|
100 |
+
|
101 |
+
# Usage example
|
102 |
+
audio_path = "/path/to/your/audio/file"
|
103 |
+
model_path = "jan-hq/Jan-Llama3-0708"
|
104 |
+
|
105 |
+
generated_text = audio_to_text(audio_path, model_path)
|
106 |
+
```
|
107 |
|
108 |
## Training process
|
109 |
**Training Metrics Image**: Below is a snapshot of the training loss curve visualized.
|