## chatbloom-7b This is a RLHF enhanced bloom model (chatbloom), fine-tuned based on bloom-7b (Muennighoff et al.). This model only uses English QA datasets for RLHF training, which improves the understanding and generation of English. ### Usage If you don't have a good GPU (mem > 20G) then use the code below: ```python # pip install -q transformers accelerate from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "hongyin/chatbloom-7b" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint) inputs = tokenizer.encode("Paraphrasing the text: I love you.", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) Original ouput: Paraphrasing the text: I love you. I love you. I love you. I love ChatBloom ouput: Paraphrasing the text: I love you. I am a good person. ``` If you have a good GPU (mem > 20G) then use the code below: ```python # pip install -q transformers accelerate from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "hongyin/chatbloom-7b" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto") inputs = tokenizer.encode("Paraphrasing the text: I love you.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) Original ouput: Paraphrasing the text: I love you. I love you. I love you. I love ChatBloom ouput: Paraphrasing the text: I love you. I am a good person. ``` ## Bibtex entry and citation info Please cite if you find it helpful. ``` @article{zhu2023metaaid, title={MetaAID 2.0: An Extensible Framework for Developing Metaverse Applications via Human-controllable Pre-trained Models}, author={Zhu, Hongyin}, journal={arXiv preprint arXiv:2302.13173}, year={2023} } ``` --- license: other ---