hooman650 commited on
Commit
68e3232
1 Parent(s): d8e90a9

Update README.md

Browse files

add important download info

Files changed (1) hide show
  1. README.md +19 -2
README.md CHANGED
@@ -11,7 +11,23 @@ This is `bge-m3-onnx-o4` weights of the original [`BAAI/bge-m3`](https://hugging
11
  - [x] Multi-Linguality: It can support more than **100** working languages.
12
  - [x] Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to **8192** tokens.
13
 
14
- ## Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  ### Dense Retrieval
17
 
@@ -26,7 +42,8 @@ from optimum.onnxruntime import ORTModelForFeatureExtraction
26
  from transformers import AutoTokenizer
27
  import torch
28
 
29
- model = ORTModelForFeatureExtraction.from_pretrained("hooman650/bge-m3-onnx-o4", provider="CUDAExecutionProvider")
 
30
  tokenizer = AutoTokenizer.from_pretrained("hooman650/bge-m3-onnx-o4")
31
 
32
  sentences = [
 
11
  - [x] Multi-Linguality: It can support more than **100** working languages.
12
  - [x] Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to **8192** tokens.
13
 
14
+ ## Usage
15
+
16
+ ### IMPORTANT - DOWNLOAD MODEL WEIGHTS
17
+
18
+ Please see the instructions below.
19
+
20
+ 1. **Download** the checkpoint: For some reason you cannot directly load from this online version (you will get an exception).
21
+ Please download this repo as below:
22
+
23
+ ```
24
+ # pip install huggingface-hub
25
+
26
+ from huggingface_hub import snapshot_download
27
+
28
+ snapshot_download(repo_id="hooman650/bge-m3-onnx-o4",local_dir="bge-m3-onnx")
29
+ ```
30
+
31
 
32
  ### Dense Retrieval
33
 
 
42
  from transformers import AutoTokenizer
43
  import torch
44
 
45
+ # Make sure that you download the model weights locally to `bge-m3-onnx`
46
+ model = ORTModelForFeatureExtraction.from_pretrained("bge-m3-onnx", provider="CUDAExecutionProvider") # omit provider for CPU usage.
47
  tokenizer = AutoTokenizer.from_pretrained("hooman650/bge-m3-onnx-o4")
48
 
49
  sentences = [