--- license: mit pipeline_tag: feature-extraction --- # bge-m3-onnx-o4 This is `bge-m3-onnx-o4` weights of the original [`BAAI/bge-m3`](https://huggingface.co/BAAI/bge-m3). Why is this model cool? - [x] Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval. - [x] Multi-Linguality: It can support more than **100** working languages. - [x] Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to **8192** tokens. ## Usage ### IMPORTANT - DOWNLOAD MODEL WEIGHTS Please see the instructions below. 1. **Download** the checkpoint: For some reason you cannot directly load from this online version (you will get an exception). Please download this repo as below: ``` # pip install huggingface-hub from huggingface_hub import snapshot_download snapshot_download(repo_id="hooman650/bge-m3-onnx-o4",local_dir="bge-m3-onnx") ``` ### Dense Retrieval ``` # for cuda pip install --upgrade-strategy eager optimum[onnxruntime] ``` ```python from optimum.onnxruntime import ORTModelForFeatureExtraction from transformers import AutoTokenizer import torch # Make sure that you download the model weights locally to `bge-m3-onnx` model = ORTModelForFeatureExtraction.from_pretrained("bge-m3-onnx", provider="CUDAExecutionProvider") # omit provider for CPU usage. tokenizer = AutoTokenizer.from_pretrained("hooman650/bge-m3-onnx-o4") sentences = [ "English: The quick brown fox jumps over the lazy dog.", "Spanish: El rápido zorro marrón salta sobre el perro perezoso.", "French: Le renard brun rapide saute par-dessus le chien paresseux.", "German: Der schnelle braune Fuchs springt über den faulen Hund.", "Italian: La volpe marrone veloce salta sopra il cane pigro.", "Japanese: 速い茶色の狐が怠惰な犬を飛び越える。", "Chinese (Simplified): 快速的棕色狐狸跳过懒狗。", "Russian: Быстрая коричневая лиса прыгает через ленивую собаку.", "Arabic: الثعلب البني السريع يقفز فوق الكلب الكسول.", "Hindi: तेज़ भूरी लोमड़ी आलसी कुत्ते के ऊपर कूद जाती है।" ] encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt').to("cuda") # Get the embeddings out=model(**encoded_input,return_dict=True).last_hidden_state # normalize the embeddings dense_vecs = torch.nn.functional.normalize(out[:, 0], dim=-1) ``` ### Multi-Vector (ColBERT) `coming soon...`