File size: 12,046 Bytes
3074d7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from einops import rearrange
from .configuration_stdit2 import STDiT2Config
from .layers import (
STDiT2Block,
CaptionEmbedder,
PatchEmbed3D,
T2IFinalLayer,
TimestepEmbedder,
SizeEmbedder,
PositionEmbedding2D
)
from rotary_embedding_torch import RotaryEmbedding
from .utils import (
get_2d_sincos_pos_embed,
approx_gelu
)
from transformers import PreTrainedModel
class STDiT2(PreTrainedModel):
config_class = STDiT2Config
def __init__(
self,
config: STDiT2Config
):
super().__init__(config)
self.pred_sigma = config.pred_sigma
self.in_channels = config.in_channels
self.out_channels = config.in_channels * 2 if config.pred_sigma else config.in_channels
self.hidden_size = config.hidden_size
self.num_heads = config.num_heads
self.no_temporal_pos_emb = config.no_temporal_pos_emb
self.depth = config.depth
self.mlp_ratio = config.mlp_ratio
self.enable_flash_attn = config.enable_flash_attn
self.enable_layernorm_kernel = config.enable_layernorm_kernel
self.enable_sequence_parallelism = config.enable_sequence_parallelism
# support dynamic input
self.patch_size = config.patch_size
self.input_size = config.input_size
self.input_sq_size = config.input_sq_size
self.pos_embed = PositionEmbedding2D(config.hidden_size)
self.x_embedder = PatchEmbed3D(config.patch_size, config.in_channels, config.hidden_size)
self.t_embedder = TimestepEmbedder(config.hidden_size)
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(config.hidden_size, 6 * config.hidden_size, bias=True))
self.t_block_temp = nn.Sequential(nn.SiLU(), nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=True)) # new
self.y_embedder = CaptionEmbedder(
in_channels=config.caption_channels,
hidden_size=config.hidden_size,
uncond_prob=config.class_dropout_prob,
act_layer=approx_gelu,
token_num=config.model_max_length,
)
drop_path = [x.item() for x in torch.linspace(0, config.drop_path, config.depth)]
self.rope = RotaryEmbedding(dim=self.hidden_size // self.num_heads) # new
self.blocks = nn.ModuleList(
[
STDiT2Block(
self.hidden_size,
self.num_heads,
mlp_ratio=self.mlp_ratio,
drop_path=drop_path[i],
enable_flash_attn=self.enable_flash_attn,
enable_layernorm_kernel=self.enable_layernorm_kernel,
enable_sequence_parallelism=self.enable_sequence_parallelism,
rope=self.rope.rotate_queries_or_keys,
qk_norm=config.qk_norm,
)
for i in range(self.depth)
]
)
self.final_layer = T2IFinalLayer(config.hidden_size, np.prod(self.patch_size), self.out_channels)
# multi_res
assert self.hidden_size % 3 == 0, "hidden_size must be divisible by 3"
self.csize_embedder = SizeEmbedder(self.hidden_size // 3)
self.ar_embedder = SizeEmbedder(self.hidden_size // 3)
self.fl_embedder = SizeEmbedder(self.hidden_size) # new
self.fps_embedder = SizeEmbedder(self.hidden_size) # new
# init model
self.initialize_weights()
self.initialize_temporal()
if config.freeze is not None:
assert config.freeze in ["not_temporal", "text"]
if config.freeze == "not_temporal":
self.freeze_not_temporal()
elif config.freeze == "text":
self.freeze_text()
# sequence parallel related configs
if self.enable_sequence_parallelism:
self.sp_rank = dist.get_rank(get_sequence_parallel_group())
else:
self.sp_rank = None
def get_dynamic_size(self, x):
_, _, T, H, W = x.size()
if T % self.patch_size[0] != 0:
T += self.patch_size[0] - T % self.patch_size[0]
if H % self.patch_size[1] != 0:
H += self.patch_size[1] - H % self.patch_size[1]
if W % self.patch_size[2] != 0:
W += self.patch_size[2] - W % self.patch_size[2]
T = T // self.patch_size[0]
H = H // self.patch_size[1]
W = W // self.patch_size[2]
return (T, H, W)
def forward(
self, x, timestep, y, mask=None, x_mask=None, num_frames=None, height=None, width=None, ar=None, fps=None
):
"""
Forward pass of STDiT.
Args:
x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W]
timestep (torch.Tensor): diffusion time steps; of shape [B]
y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C]
mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token]
Returns:
x (torch.Tensor): output latent representation; of shape [B, C, T, H, W]
"""
B = x.shape[0]
x = x.to(self.final_layer.linear.weight.dtype)
timestep = timestep.to(self.final_layer.linear.weight.dtype)
y = y.to(self.final_layer.linear.weight.dtype)
# === process data info ===
# 1. get dynamic size
hw = torch.cat([height[:, None], width[:, None]], dim=1)
rs = (height[0].item() * width[0].item()) ** 0.5
csize = self.csize_embedder(hw, B)
# 2. get aspect ratio
ar = ar.unsqueeze(1)
ar = self.ar_embedder(ar, B)
data_info = torch.cat([csize, ar], dim=1)
# 3. get number of frames
fl = num_frames.unsqueeze(1)
fps = fps.unsqueeze(1)
fl = self.fl_embedder(fl, B)
fl = fl + self.fps_embedder(fps, B)
# === get dynamic shape size ===
_, _, Tx, Hx, Wx = x.size()
T, H, W = self.get_dynamic_size(x)
S = H * W
scale = rs / self.input_sq_size
base_size = round(S**0.5)
pos_emb = self.pos_embed(x, H, W, scale=scale, base_size=base_size)
# embedding
x = self.x_embedder(x) # [B, N, C]
x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S)
x = x + pos_emb
x = rearrange(x, "B T S C -> B (T S) C")
# shard over the sequence dim if sp is enabled
if self.enable_sequence_parallelism:
x = split_forward_gather_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="down")
# prepare adaIN
t = self.t_embedder(timestep, dtype=x.dtype) # [B, C]
t_spc = t + data_info # [B, C]
t_tmp = t + fl # [B, C]
t_spc_mlp = self.t_block(t_spc) # [B, 6*C]
t_tmp_mlp = self.t_block_temp(t_tmp) # [B, 3*C]
if x_mask is not None:
t0_timestep = torch.zeros_like(timestep)
t0 = self.t_embedder(t0_timestep, dtype=x.dtype)
t0_spc = t0 + data_info
t0_tmp = t0 + fl
t0_spc_mlp = self.t_block(t0_spc)
t0_tmp_mlp = self.t_block_temp(t0_tmp)
else:
t0_spc = None
t0_tmp = None
t0_spc_mlp = None
t0_tmp_mlp = None
# prepare y
y = self.y_embedder(y, self.training) # [B, 1, N_token, C]
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
# blocks
for _, block in enumerate(self.blocks):
x = block(
x,
y,
t_spc_mlp,
t_tmp_mlp,
y_lens,
x_mask,
t0_spc_mlp,
t0_tmp_mlp,
T,
S,
)
if self.enable_sequence_parallelism:
x = gather_forward_split_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="up")
# x.shape: [B, N, C]
# final process
x = self.final_layer(x, t, x_mask, t0_spc, T, S) # [B, N, C=T_p * H_p * W_p * C_out]
x = self.unpatchify(x, T, H, W, Tx, Hx, Wx) # [B, C_out, T, H, W]
# cast to float32 for better accuracy
x = x.to(torch.float32)
return x
def unpatchify(self, x, N_t, N_h, N_w, R_t, R_h, R_w):
"""
Args:
x (torch.Tensor): of shape [B, N, C]
Return:
x (torch.Tensor): of shape [B, C_out, T, H, W]
"""
# N_t, N_h, N_w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
T_p, H_p, W_p = self.patch_size
x = rearrange(
x,
"B (N_t N_h N_w) (T_p H_p W_p C_out) -> B C_out (N_t T_p) (N_h H_p) (N_w W_p)",
N_t=N_t,
N_h=N_h,
N_w=N_w,
T_p=T_p,
H_p=H_p,
W_p=W_p,
C_out=self.out_channels,
)
# unpad
x = x[:, :, :R_t, :R_h, :R_w]
return x
def unpatchify_old(self, x):
c = self.out_channels
t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
pt, ph, pw = self.patch_size
x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c))
x = rearrange(x, "n t h w r p q c -> n c t r h p w q")
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
return imgs
def get_spatial_pos_embed(self, H, W, scale=1.0, base_size=None):
pos_embed = get_2d_sincos_pos_embed(
self.hidden_size,
(H, W),
scale=scale,
base_size=base_size,
)
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False)
return pos_embed
def freeze_not_temporal(self):
for n, p in self.named_parameters():
if "attn_temp" not in n:
p.requires_grad = False
def freeze_text(self):
for n, p in self.named_parameters():
if "cross_attn" in n:
p.requires_grad = False
def initialize_temporal(self):
for block in self.blocks:
nn.init.constant_(block.attn_temp.proj.weight, 0)
nn.init.constant_(block.attn_temp.proj.bias, 0)
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
nn.init.normal_(self.t_block[1].weight, std=0.02)
nn.init.normal_(self.t_block_temp[1].weight, std=0.02)
# Initialize caption embedding MLP:
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02)
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02)
# Zero-out adaLN modulation layers in PixArt blocks:
for block in self.blocks:
nn.init.constant_(block.cross_attn.proj.weight, 0)
nn.init.constant_(block.cross_attn.proj.bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
|