File size: 1,900 Bytes
25d1d74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from transformers.configuration_utils import PretrainedConfig


class Grok1Config(PretrainedConfig):
    model_type = "grok-1"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=4096,
        widening_factor=4.0,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=32,
        attn_output_multiplier=1.0,
        max_attn_value=1.0,
        max_position_embeddings=4096,
        rms_norm_eps=1e-5,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=1,
        eos_token_id=2,
        tie_word_embeddings=True,
        num_experts_per_tok=2,
        num_experts=8,
        output_router_logits=False,
        router_aux_loss_coef=0.001,
        **kwargs
    ):
        self.vocab_size = vocab_size
        self.attn_output_multiplier = attn_output_multiplier
        self.max_attn_value = max_attn_value
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.widening_factor = widening_factor
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache

        self.num_experts_per_tok = num_experts_per_tok
        self.num_experts = num_experts
        self.output_router_logits = output_router_logits
        self.router_aux_loss_coef = router_aux_loss_coef
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )