from typing import List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging try: from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask HAS_MASK_UTILS = True except ImportError: HAS_MASK_UTILS = False from .configuration_grok1 import Grok1Config from .modeling_grok1_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast logger = logging.get_logger(__name__) # copied from https://github.com/huggingface/transformers/blob/v4.36.1/src/transformers/models/mixtral/modeling_mixtral.py def load_balancing_loss_func( gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2 ) -> float: r""" Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between experts is too unbalanced. Args: gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): Logits from the `gate`, should be a tuple of tensors. Shape: [batch_size, seqeunce_length, num_experts]. num_experts (`int`, *optional*): Number of experts Returns: The auxiliary loss. """ if gate_logits is None: return 0 if isinstance(gate_logits, tuple): # cat along the layers? compute_device = gate_logits[0].device gate_logits = torch.cat( [gate.to(compute_device) for gate in gate_logits], dim=0 ) routing_weights, selected_experts = torch.topk(gate_logits, top_k, dim=-1) routing_weights = routing_weights.softmax(dim=-1) # cast the expert indices to int64, otherwise one-hot encoding will fail if selected_experts.dtype != torch.int64: selected_experts = selected_experts.to(torch.int64) if len(selected_experts.shape) == 2: selected_experts = selected_experts.unsqueeze(2) expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) # For a given token, determine if it was routed to a given expert. expert_mask = torch.max(expert_mask, axis=-2).values # cast to float32 otherwise mean will fail expert_mask = expert_mask.to(torch.float32) tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2) router_prob_per_group_and_expert = torch.mean(routing_weights, axis=-1) return torch.mean( tokens_per_group_and_expert * router_prob_per_group_and_expert.unsqueeze(-1) ) * (num_experts**2) class RMSNorm(nn.Module): def __init__( self, hidden_size: int, eps: float = 1e-5, create_scale: bool = True, ) -> None: super().__init__() self.variance_epsilon = eps if create_scale: self.scale = nn.Parameter(torch.zeros(hidden_size)) else: self.scale = 1.0 def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) hidden_states = self.scale * hidden_states return hidden_states.to(input_dtype) class RotaryEmbedding(nn.Module): def __init__( self, dim: int, max_position_embeddings: int = 2048, base: int = 10000 ) -> None: super().__init__() assert dim % 2 == 0 self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / ( self.base ** (torch.arange(0, self.dim, 2).float() / self.dim) ) self.register_buffer("inv_freq", inv_freq, persistent=False) self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(), ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange( self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype ) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class MultiHeadAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_key_value_heads: Optional[int] = None, max_position_embeddings: int = 2048, attn_output_multiplier: float = 1.0, max_attn_val: float = 30.0, ): super().__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.head_dim = hidden_size // num_heads if num_key_value_heads is None: num_key_value_heads = num_heads self.num_key_value_heads = num_key_value_heads self.attn_output_multiplier = attn_output_multiplier self.max_attn_val = max_attn_val if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear( hidden_size, self.num_key_value_heads * self.head_dim, bias=False ) self.v_proj = nn.Linear( hidden_size, self.num_key_value_heads * self.head_dim, bias=False ) self.o_proj = nn.Linear(self.num_heads * self.head_dim, hidden_size, bias=False) self.rotary_emb = RotaryEmbedding( self.head_dim, max_position_embeddings=max_position_embeddings, ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view( bsz, q_len, self.num_heads, self.head_dim ).transpose(1, 2) key_states = key_states.view( bsz, q_len, self.num_key_value_heads, self.head_dim ).transpose(1, 2) value_states = value_states.view( bsz, q_len, self.num_key_value_heads, self.head_dim ).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb( query_states, key_states, cos, sin, position_ids ) if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None # TODO: repeat kv attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)).to( torch.float ) attn_weights = attn_weights * self.attn_output_multiplier attn_weights = self.max_attn_val * F.tanh(attn_weights / self.max_attn_val) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask attn_weights = F.softmax(attn_weights, dim=-1).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class MoeMLP(nn.Module): def __init__( self, hidden_dim: int, ffn_dim: int, ) -> None: super().__init__() self.linear_v = nn.Linear(hidden_dim, ffn_dim, bias=False) self.linear_1 = nn.Linear(ffn_dim, hidden_dim, bias=False) self.linear = nn.Linear(hidden_dim, ffn_dim, bias=False) self.act_fn = nn.GELU() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: current_hidden_states = self.act_fn(self.linear(hidden_states)) * self.linear_v( hidden_states ) current_hidden_states = self.linear_1(current_hidden_states) return current_hidden_states class MoeBlock(nn.Module): def __init__( self, hidden_dim: int, ffn_dim: int, num_experts: int, top_k: int, ) -> None: super().__init__() self.num_experts = num_experts self.top_k = top_k self.gate = nn.Linear(hidden_dim, num_experts, bias=False) self.experts = nn.ModuleList( [MoeMLP(hidden_dim, ffn_dim) for _ in range(num_experts)] ) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (batch * sequence_length, n_experts) router_logits = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk( routing_weights, self.top_k, dim=-1 ) # we cast back to the input dtype routing_weights = routing_weights.to(hidden_states.dtype) final_hidden_states = torch.zeros( (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device, ) # One hot encode the selected experts to create an expert mask # this will be used to easily index which expert is going to be sollicitated expert_mask = torch.nn.functional.one_hot( selected_experts, num_classes=self.num_experts ).permute(2, 1, 0) # Loop over all available experts in the model and perform the computation on each expert for expert_idx in range(self.num_experts): expert_layer = self.experts[expert_idx] idx, top_x = torch.where(expert_mask[expert_idx]) if top_x.shape[0] == 0: continue # in torch it is faster to index using lists than torch tensors top_x_list = top_x.tolist() idx_list = idx.tolist() # Index the correct hidden states and compute the expert hidden state for # the current expert. We need to make sure to multiply the output hidden # states by `routing_weights` on the corresponding tokens (top-1 and top-2) current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim) current_hidden_states = ( expert_layer(current_state) * routing_weights[top_x_list, idx_list, None] ) # However `index_add_` only support torch tensors for indexing so we'll use # the `top_x` tensor here. final_hidden_states.index_add_( 0, top_x, current_hidden_states.to(hidden_states.dtype) ) final_hidden_states = final_hidden_states.reshape( batch_size, sequence_length, hidden_dim ) return final_hidden_states, router_logits class DecoderLayer(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_key_value_heads: int, num_experts: int, top_k: int, widening_factor: float = 4.0, max_position_embeddings: int = 2048, attn_output_multiplier: float = 1.0, max_attn_val: float = 30.0, rms_norm_eps: float = 1e-5, ) -> None: super().__init__() self.attn = MultiHeadAttention( hidden_size, num_heads, num_key_value_heads, max_position_embeddings=max_position_embeddings, attn_output_multiplier=attn_output_multiplier, max_attn_val=max_attn_val, ) ffn_dim = int(hidden_size * widening_factor) self.moe_block = MoeBlock(hidden_size, ffn_dim, num_experts, top_k) self.pre_attn_norm = RMSNorm(hidden_size, eps=rms_norm_eps) self.post_attn_norm = RMSNorm(hidden_size, eps=rms_norm_eps) self.pre_moe_norm = RMSNorm(hidden_size, eps=rms_norm_eps) self.post_moe_norm = RMSNorm(hidden_size, eps=rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = False, **kwargs, ) -> Tuple[ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] ]: residual = hidden_states hidden_states = self.pre_attn_norm(hidden_states) hidden_states, attention_weights, present_key_value = self.attn( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = self.post_attn_norm(hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.pre_moe_norm(hidden_states) hidden_states, router_logits = self.moe_block(hidden_states) hidden_states = self.post_moe_norm(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attention_weights,) if use_cache: outputs += (present_key_value,) if output_router_logits: outputs += (router_logits,) return outputs class Grok1PretrainedModel(PreTrainedModel): config_class = Grok1Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["DecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = False _supports_cache_class = False def _init_weights(self, module) -> None: if isinstance(module, nn.Linear): module.weight.data.zero_() if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.zero_() # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0, ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat( [ torch.zeros( tgt_len, past_key_values_length, dtype=dtype, device=device ), mask, ], dim=-1, ) return mask[None, None, :, :].expand( bsz, 1, tgt_len, tgt_len + past_key_values_length ) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill( inverted_mask.to(torch.bool), torch.finfo(dtype).min ) class Grok1Model(Grok1PretrainedModel): def __init__(self, config: Grok1Config) -> None: super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding( config.vocab_size, config.hidden_size, self.padding_idx ) self.layers = nn.ModuleList( [ DecoderLayer( hidden_size=config.hidden_size, num_heads=config.num_attention_heads, num_key_value_heads=config.num_key_value_heads, num_experts=config.num_experts, top_k=config.num_experts_per_tok, widening_factor=config.widening_factor, max_position_embeddings=config.max_position_embeddings, attn_output_multiplier=config.attn_output_multiplier, max_attn_val=config.max_attn_value, rms_norm_eps=config.rms_norm_eps, ) for layer_idx in range(config.num_hidden_layers) ] ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask( self, attention_mask, input_shape, inputs_embeds, past_key_values_length ): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask( attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ).to(inputs_embeds.device) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MoeModelOutputWithPast]: output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: batch_size, seq_length = input_ids.shape[:2] elif inputs_embeds is not None: batch_size, seq_length = inputs_embeds.shape[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device, ) position_ids = position_ids.unsqueeze(0) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if HAS_MASK_UTILS: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) else: if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device, ) attention_mask = self._prepare_decoder_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) # embed positions hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_router_logits = () if output_router_logits else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = ( past_key_values[idx] if past_key_values is not None else None ) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if output_router_logits: all_router_logits += (layer_outputs[-1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [ hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits, ] if v is not None ) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, router_logits=all_router_logits, ) class Grok1ModelForCausalLM(Grok1PretrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: Grok1Config): super().__init__(config) self.model = Grok1Model(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.router_aux_loss_coef = config.router_aux_loss_coef self.num_experts = config.num_experts self.num_experts_per_tok = config.num_experts_per_tok self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MoeCausalLMOutputWithPast]: output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) aux_loss = None if output_router_logits: aux_loss = load_balancing_loss_func( outputs.router_logits if return_dict else outputs[-1], self.num_experts, self.num_experts_per_tok, ) if labels is not None: loss += self.router_aux_loss_coef * aux_loss if not return_dict: output = (logits,) + outputs[1:] if output_router_logits: output = (aux_loss,) + output return (loss,) + output if loss is not None else output return MoeCausalLMOutputWithPast( loss=loss, aux_loss=aux_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs, ): if past_key_values: input_ids = input_ids[:, -1:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs