from transformers.configuration_utils import PretrainedConfig class Grok1Config(PretrainedConfig): model_type = "grok-1" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, hidden_size=4096, widening_factor=4.0, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, attn_output_multiplier=1.0, max_attn_value=1.0, max_position_embeddings=4096, embedding_multiplier_scale: float = 1.0, output_multiplier_scale: float = 1.0, rms_norm_eps=1e-5, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, tie_word_embeddings=True, num_experts_per_tok=2, num_experts=8, output_router_logits=False, router_aux_loss_coef=0.001, **kwargs ): self.vocab_size = vocab_size self.attn_output_multiplier = attn_output_multiplier self.max_attn_value = max_attn_value self.max_position_embeddings = max_position_embeddings self.embedding_multiplier_scale = embedding_multiplier_scale self.output_multiplier_scale = output_multiplier_scale self.hidden_size = hidden_size self.widening_factor = widening_factor self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.num_experts_per_tok = num_experts_per_tok self.num_experts = num_experts self.output_router_logits = output_router_logits self.router_aux_loss_coef = router_aux_loss_coef super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )