vqvae / attention.py
frankleeeee's picture
Upload VQVAE
8ff4a33 verified
raw
history blame
22 kB
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from ._utils import shift_dim, view_range, tensor_slice
class AttentionStack(nn.Module):
def __init__(
self, shape, embd_dim, n_head, n_layer, dropout,
attn_type, attn_dropout, class_cond_dim, frame_cond_shape,
):
super().__init__()
self.shape = shape
self.embd_dim = embd_dim
self.use_frame_cond = frame_cond_shape is not None
self.right_shift = RightShift(embd_dim)
self.pos_embd = AddBroadcastPosEmbed(
shape=shape, embd_dim=embd_dim
)
self.attn_nets = nn.ModuleList(
[
AttentionBlock(
shape=shape,
embd_dim=embd_dim,
n_head=n_head,
n_layer=n_layer,
dropout=dropout,
attn_type=attn_type,
attn_dropout=attn_dropout,
class_cond_dim=class_cond_dim,
frame_cond_shape=frame_cond_shape
)
for i in range(n_layer)
]
)
def forward(self, x, cond, decode_step, decode_idx):
"""
Args
------
x: (b, d1, d2, ..., dn, embd_dim)
cond: a dictionary of conditioning tensors
(below is used only when sampling for fast decoding)
decode: the enumerated rasterscan order of the current idx being sampled
decode_step: a tuple representing the current idx being sampled
"""
x = self.right_shift(x, decode_step)
x = self.pos_embd(x, decode_step, decode_idx)
for net in self.attn_nets:
x = net(x, cond, decode_step, decode_idx)
return x
class AttentionBlock(nn.Module):
def __init__(self, shape, embd_dim, n_head, n_layer, dropout,
attn_type, attn_dropout, class_cond_dim, frame_cond_shape):
super().__init__()
self.use_frame_cond = frame_cond_shape is not None
self.pre_attn_norm = LayerNorm(embd_dim, class_cond_dim)
self.post_attn_dp = nn.Dropout(dropout)
self.attn = MultiHeadAttention(shape, embd_dim, embd_dim, n_head,
n_layer, causal=True, attn_type=attn_type,
attn_kwargs=dict(attn_dropout=attn_dropout))
if frame_cond_shape is not None:
enc_len = np.prod(frame_cond_shape[:-1])
self.pre_enc_norm = LayerNorm(embd_dim, class_cond_dim)
self.post_enc_dp = nn.Dropout(dropout)
self.enc_attn = MultiHeadAttention(shape, embd_dim, frame_cond_shape[-1],
n_head, n_layer, attn_type='full',
attn_kwargs=dict(attn_dropout=0.), causal=False)
self.pre_fc_norm = LayerNorm(embd_dim, class_cond_dim)
self.post_fc_dp = nn.Dropout(dropout)
self.fc_block = nn.Sequential(
nn.Linear(in_features=embd_dim, out_features=embd_dim * 4),
GeLU2(),
nn.Linear(in_features=embd_dim * 4, out_features=embd_dim),
)
def forward(self, x, cond, decode_step, decode_idx):
h = self.pre_attn_norm(x, cond)
if self.training:
h = checkpoint(self.attn, h, h, h, decode_step, decode_idx)
else:
h = self.attn(h, h, h, decode_step, decode_idx)
h = self.post_attn_dp(h)
x = x + h
if self.use_frame_cond:
h = self.pre_enc_norm(x, cond)
if self.training:
h = checkpoint(self.enc_attn, h, cond['frame_cond'], cond['frame_cond'],
decode_step, decode_idx)
else:
h = self.enc_attn(h, cond['frame_cond'], cond['frame_cond'],
decode_step, decode_idx)
h = self.post_enc_dp(h)
x = x + h
h = self.pre_fc_norm(x, cond)
if self.training:
h = checkpoint(self.fc_block, h)
else:
h = self.fc_block(h)
h = self.post_fc_dp(h)
x = x + h
return x
class MultiHeadAttention(nn.Module):
def __init__(self, shape, dim_q, dim_kv, n_head, n_layer,
causal, attn_type, attn_kwargs):
super().__init__()
self.causal = causal
self.shape = shape
self.d_k = dim_q // n_head
self.d_v = dim_kv // n_head
self.n_head = n_head
self.w_qs = nn.Linear(dim_q, n_head * self.d_k, bias=False) # q
self.w_qs.weight.data.normal_(std=1.0 / np.sqrt(dim_q))
self.w_ks = nn.Linear(dim_kv, n_head * self.d_k, bias=False) # k
self.w_ks.weight.data.normal_(std=1.0 / np.sqrt(dim_kv))
self.w_vs = nn.Linear(dim_kv, n_head * self.d_v, bias=False) # v
self.w_vs.weight.data.normal_(std=1.0 / np.sqrt(dim_kv))
self.fc = nn.Linear(n_head * self.d_v, dim_q, bias=True) # c
self.fc.weight.data.normal_(std=1.0 / np.sqrt(dim_q * n_layer))
if attn_type == 'full':
self.attn = FullAttention(shape, causal, **attn_kwargs)
elif attn_type == 'axial':
assert not causal, 'causal axial attention is not supported'
self.attn = AxialAttention(len(shape), **attn_kwargs)
elif attn_type == 'sparse':
self.attn = SparseAttention(shape, n_head, causal, **attn_kwargs)
self.cache = None
def forward(self, q, k, v, decode_step=None, decode_idx=None):
""" Compute multi-head attention
Args
q, k, v: a [b, d1, ..., dn, c] tensor or
a [b, 1, ..., 1, c] tensor if decode_step is not None
Returns
The output after performing attention
"""
# compute k, q, v
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
q = view_range(self.w_qs(q), -1, None, (n_head, d_k))
k = view_range(self.w_ks(k), -1, None, (n_head, d_k))
v = view_range(self.w_vs(v), -1, None, (n_head, d_v))
# b x n_head x seq_len x d
# (b, *d_shape, n_head, d) -> (b, n_head, *d_shape, d)
q = shift_dim(q, -2, 1)
k = shift_dim(k, -2, 1)
v = shift_dim(v, -2, 1)
# fast decoding
if decode_step is not None:
if decode_step == 0:
if self.causal:
k_shape = (q.shape[0], n_head, *self.shape, self.d_k)
v_shape = (q.shape[0], n_head, *self.shape, self.d_v)
self.cache = dict(k=torch.zeros(k_shape, dtype=k.dtype, device=q.device),
v=torch.zeros(v_shape, dtype=v.dtype, device=q.device))
else:
# cache only once in the non-causal case
self.cache = dict(k=k.clone(), v=v.clone())
if self.causal:
idx = (slice(None, None), slice(None, None), *[slice(i, i+ 1) for i in decode_idx])
self.cache['k'][idx] = k
self.cache['v'][idx] = v
k, v = self.cache['k'], self.cache['v']
a = self.attn(q, k, v, decode_step, decode_idx)
# (b, *d_shape, n_head, d) -> (b, *d_shape, n_head * d)
a = shift_dim(a, 1, -2).flatten(start_dim=-2)
a = self.fc(a) # (b x seq_len x embd_dim)
return a
############## Attention #######################
class FullAttention(nn.Module):
def __init__(self, shape, causal, attn_dropout):
super().__init__()
self.causal = causal
self.attn_dropout = attn_dropout
seq_len = np.prod(shape)
if self.causal:
self.register_buffer('mask', torch.tril(torch.ones(seq_len, seq_len)))
def forward(self, q, k, v, decode_step, decode_idx):
mask = self.mask if self.causal else None
if decode_step is not None and mask is not None:
mask = mask[[decode_step]]
old_shape = q.shape[2:-1]
q = q.flatten(start_dim=2, end_dim=-2)
k = k.flatten(start_dim=2, end_dim=-2)
v = v.flatten(start_dim=2, end_dim=-2)
out = scaled_dot_product_attention(q, k, v, mask=mask,
attn_dropout=self.attn_dropout,
training=self.training)
return view_range(out, 2, 3, old_shape)
class AxialAttention(nn.Module):
def __init__(self, n_dim, axial_dim):
super().__init__()
if axial_dim < 0:
axial_dim = 2 + n_dim + 1 + axial_dim
else:
axial_dim += 2 # account for batch, head, dim
self.axial_dim = axial_dim
def forward(self, q, k, v, decode_step, decode_idx):
q = shift_dim(q, self.axial_dim, -2).flatten(end_dim=-3)
k = shift_dim(k, self.axial_dim, -2).flatten(end_dim=-3)
v = shift_dim(v, self.axial_dim, -2)
old_shape = list(v.shape)
v = v.flatten(end_dim=-3)
out = scaled_dot_product_attention(q, k, v, training=self.training)
out = out.view(*old_shape)
out = shift_dim(out, -2, self.axial_dim)
return out
class SparseAttention(nn.Module):
ops = dict()
attn_mask = dict()
block_layout = dict()
def __init__(self, shape, n_head, causal, num_local_blocks=4, block=32,
attn_dropout=0.): # does not use attn_dropout
super().__init__()
self.causal = causal
self.shape = shape
self.sparsity_config = StridedSparsityConfig(shape=shape, n_head=n_head,
causal=causal, block=block,
num_local_blocks=num_local_blocks)
if self.shape not in SparseAttention.block_layout:
SparseAttention.block_layout[self.shape] = self.sparsity_config.make_layout()
if causal and self.shape not in SparseAttention.attn_mask:
SparseAttention.attn_mask[self.shape] = self.sparsity_config.make_sparse_attn_mask()
def get_ops(self):
try:
from deepspeed.ops.sparse_attention import MatMul, Softmax
except:
raise Exception('Error importing deepspeed. Please install using `DS_BUILD_SPARSE_ATTN=1 pip install deepspeed`')
if self.shape not in SparseAttention.ops:
sparsity_layout = self.sparsity_config.make_layout()
sparse_dot_sdd_nt = MatMul(sparsity_layout,
self.sparsity_config.block,
'sdd',
trans_a=False,
trans_b=True)
sparse_dot_dsd_nn = MatMul(sparsity_layout,
self.sparsity_config.block,
'dsd',
trans_a=False,
trans_b=False)
sparse_softmax = Softmax(sparsity_layout, self.sparsity_config.block)
SparseAttention.ops[self.shape] = (sparse_dot_sdd_nt,
sparse_dot_dsd_nn,
sparse_softmax)
return SparseAttention.ops[self.shape]
def forward(self, q, k, v, decode_step, decode_idx):
if self.training and self.shape not in SparseAttention.ops:
self.get_ops()
SparseAttention.block_layout[self.shape] = SparseAttention.block_layout[self.shape].to(q)
if self.causal:
SparseAttention.attn_mask[self.shape] = SparseAttention.attn_mask[self.shape].to(q).type_as(q)
attn_mask = SparseAttention.attn_mask[self.shape] if self.causal else None
old_shape = q.shape[2:-1]
q = q.flatten(start_dim=2, end_dim=-2)
k = k.flatten(start_dim=2, end_dim=-2)
v = v.flatten(start_dim=2, end_dim=-2)
if decode_step is not None:
mask = self.sparsity_config.get_non_block_layout_row(SparseAttention.block_layout[self.shape], decode_step)
out = scaled_dot_product_attention(q, k, v, mask=mask, training=self.training)
else:
if q.shape != k.shape or k.shape != v.shape:
raise Exception('SparseAttention only support self-attention')
sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax = self.get_ops()
scaling = float(q.shape[-1]) ** -0.5
attn_output_weights = sparse_dot_sdd_nt(q, k)
if attn_mask is not None:
attn_output_weights = attn_output_weights.masked_fill(attn_mask == 0,
float('-inf'))
attn_output_weights = sparse_softmax(
attn_output_weights,
scale=scaling
)
out = sparse_dot_dsd_nn(attn_output_weights, v)
return view_range(out, 2, 3, old_shape)
class StridedSparsityConfig(object):
"""
Strided Sparse configuration specified in https://arxiv.org/abs/1904.10509 that
generalizes to arbitrary dimensions
"""
def __init__(self, shape, n_head, causal, block, num_local_blocks):
self.n_head = n_head
self.shape = shape
self.causal = causal
self.block = block
self.num_local_blocks = num_local_blocks
assert self.num_local_blocks >= 1, 'Must have at least 1 local block'
assert self.seq_len % self.block == 0, 'seq len must be divisible by block size'
self._block_shape = self._compute_block_shape()
self._block_shape_cum = self._block_shape_cum_sizes()
@property
def seq_len(self):
return np.prod(self.shape)
@property
def num_blocks(self):
return self.seq_len // self.block
def set_local_layout(self, layout):
num_blocks = self.num_blocks
for row in range(0, num_blocks):
end = min(row + self.num_local_blocks, num_blocks)
for col in range(
max(0, row - self.num_local_blocks),
(row + 1 if self.causal else end)):
layout[:, row, col] = 1
return layout
def set_global_layout(self, layout):
num_blocks = self.num_blocks
n_dim = len(self._block_shape)
for row in range(num_blocks):
assert self._to_flattened_idx(self._to_unflattened_idx(row)) == row
cur_idx = self._to_unflattened_idx(row)
# no strided attention over last dim
for d in range(n_dim - 1):
end = self._block_shape[d]
for i in range(0, (cur_idx[d] + 1 if self.causal else end)):
new_idx = list(cur_idx)
new_idx[d] = i
new_idx = tuple(new_idx)
col = self._to_flattened_idx(new_idx)
layout[:, row, col] = 1
return layout
def make_layout(self):
layout = torch.zeros((self.n_head, self.num_blocks, self.num_blocks), dtype=torch.int64)
layout = self.set_local_layout(layout)
layout = self.set_global_layout(layout)
return layout
def make_sparse_attn_mask(self):
block_layout = self.make_layout()
assert block_layout.shape[1] == block_layout.shape[2] == self.num_blocks
num_dense_blocks = block_layout.sum().item()
attn_mask = torch.ones(num_dense_blocks, self.block, self.block)
counter = 0
for h in range(self.n_head):
for i in range(self.num_blocks):
for j in range(self.num_blocks):
elem = block_layout[h, i, j].item()
if elem == 1:
assert i >= j
if i == j: # need to mask within block on diagonals
attn_mask[counter] = torch.tril(attn_mask[counter])
counter += 1
assert counter == num_dense_blocks
return attn_mask.unsqueeze(0)
def get_non_block_layout_row(self, block_layout, row):
block_row = row // self.block
block_row = block_layout[:, [block_row]] # n_head x 1 x n_blocks
block_row = block_row.repeat_interleave(self.block, dim=-1)
block_row[:, :, row + 1:] = 0.
return block_row
############# Helper functions ##########################
def _compute_block_shape(self):
n_dim = len(self.shape)
cum_prod = 1
for i in range(n_dim - 1, -1, -1):
cum_prod *= self.shape[i]
if cum_prod > self.block:
break
assert cum_prod % self.block == 0
new_shape = (*self.shape[:i], cum_prod // self.block)
assert np.prod(new_shape) == np.prod(self.shape) // self.block
return new_shape
def _block_shape_cum_sizes(self):
bs = np.flip(np.array(self._block_shape))
return tuple(np.flip(np.cumprod(bs)[:-1])) + (1,)
def _to_flattened_idx(self, idx):
assert len(idx) == len(self._block_shape), f"{len(idx)} != {len(self._block_shape)}"
flat_idx = 0
for i in range(len(self._block_shape)):
flat_idx += idx[i] * self._block_shape_cum[i]
return flat_idx
def _to_unflattened_idx(self, flat_idx):
assert flat_idx < np.prod(self._block_shape)
idx = []
for i in range(len(self._block_shape)):
idx.append(flat_idx // self._block_shape_cum[i])
flat_idx %= self._block_shape_cum[i]
return tuple(idx)
################ Spatiotemporal broadcasted positional embeddings ###############
class AddBroadcastPosEmbed(nn.Module):
def __init__(self, shape, embd_dim, dim=-1):
super().__init__()
assert dim in [-1, 1] # only first or last dim supported
self.shape = shape
self.n_dim = n_dim = len(shape)
self.embd_dim = embd_dim
self.dim = dim
assert embd_dim % n_dim == 0, f"{embd_dim} % {n_dim} != 0"
self.emb = nn.ParameterDict({
f'd_{i}': nn.Parameter(torch.randn(shape[i], embd_dim // n_dim) * 0.01
if dim == -1 else
torch.randn(embd_dim // n_dim, shape[i]) * 0.01)
for i in range(n_dim)
})
def forward(self, x, decode_step=None, decode_idx=None):
embs = []
for i in range(self.n_dim):
e = self.emb[f'd_{i}']
if self.dim == -1:
# (1, 1, ..., 1, self.shape[i], 1, ..., -1)
e = e.view(1, *((1,) * i), self.shape[i], *((1,) * (self.n_dim - i - 1)), -1)
e = e.expand(1, *self.shape, -1)
else:
e = e.view(1, -1, *((1,) * i), self.shape[i], *((1,) * (self.n_dim - i - 1)))
e = e.expand(1, -1, *self.shape)
embs.append(e)
embs = torch.cat(embs, dim=self.dim)
if decode_step is not None:
embs = tensor_slice(embs, [0, *decode_idx, 0],
[x.shape[0], *(1,) * self.n_dim, x.shape[-1]])
return x + embs
################# Helper Functions ###################################
def scaled_dot_product_attention(q, k, v, mask=None, attn_dropout=0., training=True):
# Performs scaled dot-product attention over the second to last dimension dn
# (b, n_head, d1, ..., dn, d)
attn = torch.matmul(q, k.transpose(-1, -2))
attn = attn / np.sqrt(q.shape[-1])
if mask is not None:
attn = attn.masked_fill(mask == 0, float('-inf'))
attn_float = F.softmax(attn, dim=-1)
attn = attn_float.type_as(attn) # b x n_head x d1 x ... x dn x d
attn = F.dropout(attn, p=attn_dropout, training=training)
a = torch.matmul(attn, v) # b x n_head x d1 x ... x dn x d
return a
class RightShift(nn.Module):
def __init__(self, embd_dim):
super().__init__()
self.embd_dim = embd_dim
self.sos = nn.Parameter(torch.FloatTensor(embd_dim).normal_(std=0.02), requires_grad=True)
def forward(self, x, decode_step):
if decode_step is not None and decode_step > 0:
return x
x_shape = list(x.shape)
x = x.flatten(start_dim=1, end_dim=-2) # (b, seq_len, embd_dim)
sos = torch.ones(x_shape[0], 1, self.embd_dim, dtype=torch.float32).to(self.sos) * self.sos
sos = sos.type_as(x)
x = torch.cat([sos, x[:, :-1, :]], axis=1)
x = x.view(*x_shape)
return x
class GeLU2(nn.Module):
def forward(self, x):
return (1.702 * x).sigmoid() * x
class LayerNorm(nn.Module):
def __init__(self, embd_dim, class_cond_dim):
super().__init__()
self.conditional = class_cond_dim is not None
if self.conditional:
self.w = nn.Linear(class_cond_dim, embd_dim, bias=False)
nn.init.constant_(self.w.weight.data, 1. / np.sqrt(class_cond_dim))
self.wb = nn.Linear(class_cond_dim, embd_dim, bias=False)
else:
self.g = nn.Parameter(torch.ones(embd_dim, dtype=torch.float32), requires_grad=True)
self.b = nn.Parameter(torch.zeros(embd_dim, dtype=torch.float32), requires_grad=True)
def forward(self, x, cond):
if self.conditional: # (b, cond_dim)
g = 1 + self.w(cond['class_cond']).view(x.shape[0], *(1,)*(len(x.shape)-2), x.shape[-1]) # (b, ..., embd_dim)
b = self.wb(cond['class_cond']).view(x.shape[0], *(1,)*(len(x.shape)-2), x.shape[-1])
else:
g = self.g # (embd_dim,)
b = self.b
x_float = x.float()
mu = x_float.mean(dim=-1, keepdims=True)
s = (x_float - mu).square().mean(dim=-1, keepdims=True)
x_float = (x_float - mu) * (1e-5 + s.rsqrt()) # (b, ..., embd_dim)
x_float = x_float * g + b
x = x_float.type_as(x)
return x