hplisiecki commited on
Commit
f214bbb
1 Parent(s): 99c1831

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -1
README.md CHANGED
@@ -60,6 +60,7 @@ You can use the model and tokenizer as follows:
60
 
61
  ```python
62
  from transformers import AutoTokenizer, AutoModel
 
63
 
64
  # Load the tokenizer
65
  tokenizer = AutoTokenizer.from_pretrained("hplisiecki/polemo-intensity")
@@ -67,7 +68,13 @@ tokenizer = AutoTokenizer.from_pretrained("hplisiecki/polemo-intensity")
67
  # Load the model
68
  model = AutoModel.from_pretrained("hplisiecki/polemo-intensity")
69
 
 
 
 
70
  # Test the model with a sample input
71
  inputs = tokenizer("This is a test input.", return_tensors="pt")
72
  outputs = model(**inputs)
73
- print(outputs)
 
 
 
 
60
 
61
  ```python
62
  from transformers import AutoTokenizer, AutoModel
63
+ import torch
64
 
65
  # Load the tokenizer
66
  tokenizer = AutoTokenizer.from_pretrained("hplisiecki/polemo-intensity")
 
68
  # Load the model
69
  model = AutoModel.from_pretrained("hplisiecki/polemo-intensity")
70
 
71
+ # Define emotion columns
72
+ emotion_columns = ['Happiness', 'Sadness', 'Anger', 'Disgust', 'Fear', 'Pride', 'Valence', 'Arousal']
73
+
74
  # Test the model with a sample input
75
  inputs = tokenizer("This is a test input.", return_tensors="pt")
76
  outputs = model(**inputs)
77
+
78
+ # Print out the emotion ratings
79
+ for emotion, rating in zip(emotion_columns, outputs):
80
+ print(f"{emotion}: {rating.item()}")