hs1710 commited on
Commit
00fdcf7
·
1 Parent(s): 44f43c1

Done lunar landing

Browse files
First_lunar_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94b4d030d94520e9bd0877d31f5ce1ebc1597804a67c36f32fcc4cfa7974af4f
3
+ size 146215
First_lunar_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
First_lunar_model/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c499fcaf130>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c499fcaf1c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c499fcaf250>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c499fcaf2e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c499fcaf370>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c499fcaf400>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c499fcaf490>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c499fcaf520>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c499fcaf5b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c499fcaf640>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c499fcaf6d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c499fcaf760>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c499fca7100>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 2031616,
25
+ "_total_timesteps": 2000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1690996825518967275,
30
+ "learning_rate": 0.0005,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADcMrxxLS65pk3aO/T+vjzBl6K4iqkzuwAAgD8AAIA/GjNvPYhxk7yYBx271x5DPfiVAL7WuRU+AACAPwAAgD9mvr67pKAxuZrSXDtCW2U4T1APuPIlkrgAAIA/AACAPzrLMD4krvU9xttwvhNvub79jwu+ti5AvgAAAAAAAAAAAAYZvK5nkbpCeSo8UwhiNOjgJLt+h4YzAACAPwAAgD8zeNM87IHOuQhUVTsJxaW243fYuzYYeroAAIA/AACAP2ZyLTxcSwy6HR8ku0CW6LUf19a6/lg+OgAAgD8AAIA/M0awvPYkcrpjtJA7lPXBOHHgCLqOp6e6AACAPwAAgD/NnS+9XOtiukNiNzvVATo1TPvJOKVRU7oAAIA/AACAP00iLL2PllW6Cv8fO3cYdTfIm7y5upc6NgAAAAAAAAAApvSxPfYgZLqtwnS8sCmwNkrbpLuOFB62AACAPwAAgD+aNZI8XMtGuiEjpTtG5oI4jV9VO4hwU7oAAIA/AACAP5qum7zhOIi6struOoVLbTY0mk47HqEHugAAgD8AAIA/ZsvmvFzbSLpv1aW7yd92t8S74DrqU746AACAPwAAgD+a/dI8KfAUuvbOXbuQAX44YdVIuVun8jkAAIA/AACAP/qIRD4enZo/aMj7PrtAKL/u04I+q3FIPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVLgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFF2hX8wYciMAWyUS6CMAXSUR0C3GW9XPqs2dX2UKGgGR0BnTGCROk+HaAdN6ANoCEdAtxu46Mir1nV9lChoBkdAZJkXdj5KvmgHTegDaAhHQLcb+ER8MNN1fZQoaAZHQGe1uNPxhDxoB03oA2gIR0C3HTBk7OmjdX2UKGgGR0An9/gBLf1paAdLcmgIR0C3HhwFX7tRdX2UKGgGR0BlVz3sXzlLaAdN6ANoCEdAtx4o/Y8MeHV9lChoBkdAYGaqZML4OGgHTegDaAhHQLcfW+VTrE91fZQoaAZHQGYmiyyD7IloB03oA2gIR0C3IFOrQw9JdX2UKGgGR8BPo4tYjjaPaAdLe2gIR0C3IIeg6EJ0dX2UKGgGR0Bj3VDrqt5laAdN6ANoCEdAtyDxAkcCHXV9lChoBkdAZlsAwPAfuGgHTegDaAhHQLchW20iQkp1fZQoaAZHQGPoZhjOLR9oB03oA2gIR0C3IeB64UeudX2UKGgGR0BopZVMmF8HaAdN6ANoCEdAtyL6+Cbtq3V9lChoBkdAZ/B69CeEqWgHTegDaAhHQLcjkRWLgoB1fZQoaAZHQGWo8EFGG21oB03oA2gIR0C3JB2NWEK3dX2UKGgGR0BlneHvc8DCaAdN6ANoCEdAtygW2NNrTHV9lChoBkdAaDyYDTz/ZWgHTegDaAhHQLcosr3Cbc51fZQoaAZHQGdQW6kIomZoB03oA2gIR0C3KUXjyWiUdX2UKGgGR0BlqeWnjyWiaAdN6ANoCEdAtymw5aNdaHV9lChoBkfAVB0Ia99MK2gHS3ZoCEdAtzqI3cYZVHV9lChoBkdAZHCRzzVc2WgHTegDaAhHQLc668GLUCt1fZQoaAZHQGYDOvECNjtoB03oA2gIR0C3PFj37DVIdX2UKGgGR0BoDe2CuloEaAdN6ANoCEdAtz0SxzJZGXV9lChoBkdAZHkVt4zJp2gHTegDaAhHQLc+BM3qAz51fZQoaAZHQGYivuG9HtpoB03oA2gIR0C3PtrNKRMfdX2UKGgGR0Blfy7btZ3caAdN6ANoCEdAtz8Pnied1HV9lChoBkdAZmwlDWsijmgHTegDaAhHQLc/fEf1Yhd1fZQoaAZHQGamb5Ec81ZoB03oA2gIR0C3P+gFxGUfdX2UKGgGR0BhEM1O0svqaAdN6ANoCEdAt0BtqASWaHV9lChoBkdAZSwsySFGomgHTegDaAhHQLdBkRzRx951fZQoaAZHQFFiwsGxD9hoB0txaAhHQLdCBIbwSap1fZQoaAZHQGPiWZJCjUNoB03oA2gIR0C3QiJwsGxEdX2UKGgGR0Bk4aTnq3VkaAdN6ANoCEdAt0K1TsIE83V9lChoBkdAQ7pFEy+HrWgHS6BoCEdAt0S9n5BToHV9lChoBkdAUalRjz7MxGgHS35oCEdAt0eethd+onV9lChoBkdAZerP+GXXy2gHTegDaAhHQLdHv9iMHbB1fZQoaAZHQGPaOejEehhoB03oA2gIR0C3SGRZdOZcdX2UKGgGR0Bl1aRnvlU7aAdN6ANoCEdAt0kERXfZVXV9lChoBkdAY2ueCCjDbmgHTegDaAhHQLdLcUEgW8B1fZQoaAZHQGSGkYXO4XpoB03oA2gIR0C3S9vXXiBHdX2UKGgGR0BlUD0th/iHaAdN6ANoCEdAt01VMK1G9nV9lChoBkdAaNP5/smfG2gHTegDaAhHQLdOFFSbYsd1fZQoaAZHQGdPqw6hg3NoB03oA2gIR0C3TwfPw/gSdX2UKGgGR0BklpS3solVaAdN6ANoCEdAt0/eCJ40M3V9lChoBkdAYkvSEUTL4mgHTegDaAhHQLdQExqO9391fZQoaAZHQGNMx4yGi6BoB03oA2gIR0C3UHuB+WnkdX2UKGgGR0Bgy6MYMvytaAdN6ANoCEdAt1DmVVxS53V9lChoBkdAS8VzU7Sy+2gHS5toCEdAt1KbaJyhjHV9lChoBkdAZIZUdaMaTGgHTegDaAhHQLdTV/yGzrx1fZQoaAZHQGKfbuc+aBtoB03oA2gIR0C3VAHPmgandX2UKGgGR0BlYr7Gecx1aAdN6ANoCEdAt1S35k9U0nV9lChoBkfAEcPJaJQ+EGgHS3poCEdAt1VL0UXYUXV9lChoBkdAZi78/lhgE2gHTegDaAhHQLdYu34Kx9p1fZQoaAZHQGQz7Kq4pc5oB03oA2gIR0C3WNr8vVVhdX2UKGgGR0BnzOETQE6laAdN6ANoCEdAt1l1IDoyK3V9lChoBkdAXws/1QIldGgHTegDaAhHQLdaCe9Ba9t1fZQoaAZHQGU1SB9Tgl5oB03oA2gIR0C3anUG7jDLdX2UKGgGR0BnaX8l5WzXaAdN6ANoCEdAt2rh8NQTEnV9lChoBkdAYOfjS5RTCWgHTegDaAhHQLds4IVM23t1fZQoaAZHQF980lqrR0FoB03oA2gIR0C3bexTfixWdX2UKGgGR0BjabC3w1BMaAdN6ANoCEdAt270xj8UEnV9lChoBkdAZLOcebNKRWgHTegDaAhHQLdwCjLSuyN1fZQoaAZHQGX9Elme18doB03oA2gIR0C3cIP9DQZ5dX2UKGgGR0BNY3GGVRk3aAdLnWgIR0C3cKbK/20zdX2UKGgGR0BgJEqYqoZRaAdN6ANoCEdAt3D8ZzgdfnV9lChoBkdATLhgNPP9k2gHS4NoCEdAt3Ie/yoXK3V9lChoBkdAZrYW7e2uxWgHTegDaAhHQLdySfYjB2x1fZQoaAZHQEn3oduHerNoB0t4aAhHQLdyYIF/x2B1fZQoaAZHQEekearmyPdoB0uTaAhHQLdy5XVLBbh1fZQoaAZHQGGQcGkep4toB03oA2gIR0C3c0UC/47BdX2UKGgGR0BMF/D+BH09aAdLaGgIR0C3c+y2tuDSdX2UKGgGR0BliTKFIuoQaAdN6ANoCEdAt3QBiPQv6HV9lChoBkdAZKIMZxaPjmgHTegDaAhHQLd0kaBqbjN1fZQoaAZHQE0i+X7cfvFoB0ulaAhHQLd1QhJAdGR1fZQoaAZHQFCNliz9jwxoB0t+aAhHQLd2bC2+fyx1fZQoaAZHQGoBY3eenQ9oB03oA2gIR0C3d8tEw35vdX2UKGgGR0Bm/FDfFaStaAdN6ANoCEdAt3frV7Qb/HV9lChoBkdAYL1CWu5jIGgHTegDaAhHQLd4of5DZ151fZQoaAZHQGGdSe7L+xZoB03oA2gIR0C3eWJ0r9VFdX2UKGgGR0BFCRISUTtcaAdLXmgIR0C3ebsTviLmdX2UKGgGR8A4L3rD63y7aAdLcmgIR0C3eklO0svqdX2UKGgGR0BLuIZIg/1QaAdLYmgIR0C3fB5xFRYSdX2UKGgGR0BoFxvvSc9XaAdN6ANoCEdAt3wrQkX1rnV9lChoBkdAZD2KZUkv9WgHTegDaAhHQLd8iznied11fZQoaAZHQGC5kJ8fFJhoB03oA2gIR0C3feb+o99udX2UKGgGR0An01SflIVeaAdLdWgIR0C3fl4/A0sOdX2UKGgGR0Bgn2SZBsyjaAdN6ANoCEdAt3+Ah+vyLHV9lChoBkdAUcLk4m1IAmgHS4FoCEdAt4BnSG8Em3V9lChoBkdAZnl36hxo7GgHTegDaAhHQLeBcOfNA1N1fZQoaAZHQGOxwzch1T1oB03oA2gIR0C3gq28h9srdX2UKGgGR0BkB0XYUWVNaAdN6ANoCEdAt4LZ6Ww/xHV9lChoBkdAYfO51/2Cd2gHTegDaAhHQLeD4DpTuOV1fZQoaAZHQGTKMvRJEploB03oA2gIR0C3hJLPldTpdX2UKGgGR0BlEFhy8zyjaAdN6ANoCEdAt4Sm1jRUm3V9lChoBkdAZPQOhCdBjWgHTegDaAhHQLeGQv863iJ1fZQoaAZHQGRA6K1og3doB03oA2gIR0C3h9iwSrYHdX2UKGgGR0BkR8zGgi/xaAdN6ANoCEdAt4njRLK3eHV9lChoBkdAY9pvsJIDo2gHTegDaAhHQLeKe3Ov+wV1fZQoaAZHQGTsZflZHNJoB03oA2gIR0C3isDlDF6zdX2UKGgGR0BRQwgcLjPwaAdLgWgIR0C3i+v9Hc1wdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 496,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.05,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 8,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
First_lunar_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89bcf41ed2f44fdb87998566e14c35e3538b7dcce0e2293236eee3124f5c655e
3
+ size 87545
First_lunar_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d49fd9893ab7b8813cc35e8ef37df67d5fae6889916fcc59731545fd31e5e3e9
3
+ size 43201
First_lunar_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
First_lunar_model/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 282.27 +/- 23.66
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c499fcaf130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c499fcaf1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c499fcaf250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c499fcaf2e0>", "_build": "<function ActorCriticPolicy._build at 0x7c499fcaf370>", "forward": "<function ActorCriticPolicy.forward at 0x7c499fcaf400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c499fcaf490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c499fcaf520>", "_predict": "<function ActorCriticPolicy._predict at 0x7c499fcaf5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c499fcaf640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c499fcaf6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c499fcaf760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c499fca7100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690996825518967275, "learning_rate": 0.0005, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADcMrxxLS65pk3aO/T+vjzBl6K4iqkzuwAAgD8AAIA/GjNvPYhxk7yYBx271x5DPfiVAL7WuRU+AACAPwAAgD9mvr67pKAxuZrSXDtCW2U4T1APuPIlkrgAAIA/AACAPzrLMD4krvU9xttwvhNvub79jwu+ti5AvgAAAAAAAAAAAAYZvK5nkbpCeSo8UwhiNOjgJLt+h4YzAACAPwAAgD8zeNM87IHOuQhUVTsJxaW243fYuzYYeroAAIA/AACAP2ZyLTxcSwy6HR8ku0CW6LUf19a6/lg+OgAAgD8AAIA/M0awvPYkcrpjtJA7lPXBOHHgCLqOp6e6AACAPwAAgD/NnS+9XOtiukNiNzvVATo1TPvJOKVRU7oAAIA/AACAP00iLL2PllW6Cv8fO3cYdTfIm7y5upc6NgAAAAAAAAAApvSxPfYgZLqtwnS8sCmwNkrbpLuOFB62AACAPwAAgD+aNZI8XMtGuiEjpTtG5oI4jV9VO4hwU7oAAIA/AACAP5qum7zhOIi6struOoVLbTY0mk47HqEHugAAgD8AAIA/ZsvmvFzbSLpv1aW7yd92t8S74DrqU746AACAPwAAgD+a/dI8KfAUuvbOXbuQAX44YdVIuVun8jkAAIA/AACAP/qIRD4enZo/aMj7PrtAKL/u04I+q3FIPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFF2hX8wYciMAWyUS6CMAXSUR0C3GW9XPqs2dX2UKGgGR0BnTGCROk+HaAdN6ANoCEdAtxu46Mir1nV9lChoBkdAZJkXdj5KvmgHTegDaAhHQLcb+ER8MNN1fZQoaAZHQGe1uNPxhDxoB03oA2gIR0C3HTBk7OmjdX2UKGgGR0An9/gBLf1paAdLcmgIR0C3HhwFX7tRdX2UKGgGR0BlVz3sXzlLaAdN6ANoCEdAtx4o/Y8MeHV9lChoBkdAYGaqZML4OGgHTegDaAhHQLcfW+VTrE91fZQoaAZHQGYmiyyD7IloB03oA2gIR0C3IFOrQw9JdX2UKGgGR8BPo4tYjjaPaAdLe2gIR0C3IIeg6EJ0dX2UKGgGR0Bj3VDrqt5laAdN6ANoCEdAtyDxAkcCHXV9lChoBkdAZlsAwPAfuGgHTegDaAhHQLchW20iQkp1fZQoaAZHQGPoZhjOLR9oB03oA2gIR0C3IeB64UeudX2UKGgGR0BopZVMmF8HaAdN6ANoCEdAtyL6+Cbtq3V9lChoBkdAZ/B69CeEqWgHTegDaAhHQLcjkRWLgoB1fZQoaAZHQGWo8EFGG21oB03oA2gIR0C3JB2NWEK3dX2UKGgGR0BlneHvc8DCaAdN6ANoCEdAtygW2NNrTHV9lChoBkdAaDyYDTz/ZWgHTegDaAhHQLcosr3Cbc51fZQoaAZHQGdQW6kIomZoB03oA2gIR0C3KUXjyWiUdX2UKGgGR0BlqeWnjyWiaAdN6ANoCEdAtymw5aNdaHV9lChoBkfAVB0Ia99MK2gHS3ZoCEdAtzqI3cYZVHV9lChoBkdAZHCRzzVc2WgHTegDaAhHQLc668GLUCt1fZQoaAZHQGYDOvECNjtoB03oA2gIR0C3PFj37DVIdX2UKGgGR0BoDe2CuloEaAdN6ANoCEdAtz0SxzJZGXV9lChoBkdAZHkVt4zJp2gHTegDaAhHQLc+BM3qAz51fZQoaAZHQGYivuG9HtpoB03oA2gIR0C3PtrNKRMfdX2UKGgGR0Blfy7btZ3caAdN6ANoCEdAtz8Pnied1HV9lChoBkdAZmwlDWsijmgHTegDaAhHQLc/fEf1Yhd1fZQoaAZHQGamb5Ec81ZoB03oA2gIR0C3P+gFxGUfdX2UKGgGR0BhEM1O0svqaAdN6ANoCEdAt0BtqASWaHV9lChoBkdAZSwsySFGomgHTegDaAhHQLdBkRzRx951fZQoaAZHQFFiwsGxD9hoB0txaAhHQLdCBIbwSap1fZQoaAZHQGPiWZJCjUNoB03oA2gIR0C3QiJwsGxEdX2UKGgGR0Bk4aTnq3VkaAdN6ANoCEdAt0K1TsIE83V9lChoBkdAQ7pFEy+HrWgHS6BoCEdAt0S9n5BToHV9lChoBkdAUalRjz7MxGgHS35oCEdAt0eethd+onV9lChoBkdAZerP+GXXy2gHTegDaAhHQLdHv9iMHbB1fZQoaAZHQGPaOejEehhoB03oA2gIR0C3SGRZdOZcdX2UKGgGR0Bl1aRnvlU7aAdN6ANoCEdAt0kERXfZVXV9lChoBkdAY2ueCCjDbmgHTegDaAhHQLdLcUEgW8B1fZQoaAZHQGSGkYXO4XpoB03oA2gIR0C3S9vXXiBHdX2UKGgGR0BlUD0th/iHaAdN6ANoCEdAt01VMK1G9nV9lChoBkdAaNP5/smfG2gHTegDaAhHQLdOFFSbYsd1fZQoaAZHQGdPqw6hg3NoB03oA2gIR0C3TwfPw/gSdX2UKGgGR0BklpS3solVaAdN6ANoCEdAt0/eCJ40M3V9lChoBkdAYkvSEUTL4mgHTegDaAhHQLdQExqO9391fZQoaAZHQGNMx4yGi6BoB03oA2gIR0C3UHuB+WnkdX2UKGgGR0Bgy6MYMvytaAdN6ANoCEdAt1DmVVxS53V9lChoBkdAS8VzU7Sy+2gHS5toCEdAt1KbaJyhjHV9lChoBkdAZIZUdaMaTGgHTegDaAhHQLdTV/yGzrx1fZQoaAZHQGKfbuc+aBtoB03oA2gIR0C3VAHPmgandX2UKGgGR0BlYr7Gecx1aAdN6ANoCEdAt1S35k9U0nV9lChoBkfAEcPJaJQ+EGgHS3poCEdAt1VL0UXYUXV9lChoBkdAZi78/lhgE2gHTegDaAhHQLdYu34Kx9p1fZQoaAZHQGQz7Kq4pc5oB03oA2gIR0C3WNr8vVVhdX2UKGgGR0BnzOETQE6laAdN6ANoCEdAt1l1IDoyK3V9lChoBkdAXws/1QIldGgHTegDaAhHQLdaCe9Ba9t1fZQoaAZHQGU1SB9Tgl5oB03oA2gIR0C3anUG7jDLdX2UKGgGR0BnaX8l5WzXaAdN6ANoCEdAt2rh8NQTEnV9lChoBkdAYOfjS5RTCWgHTegDaAhHQLds4IVM23t1fZQoaAZHQF980lqrR0FoB03oA2gIR0C3bexTfixWdX2UKGgGR0BjabC3w1BMaAdN6ANoCEdAt270xj8UEnV9lChoBkdAZLOcebNKRWgHTegDaAhHQLdwCjLSuyN1fZQoaAZHQGX9Elme18doB03oA2gIR0C3cIP9DQZ5dX2UKGgGR0BNY3GGVRk3aAdLnWgIR0C3cKbK/20zdX2UKGgGR0BgJEqYqoZRaAdN6ANoCEdAt3D8ZzgdfnV9lChoBkdATLhgNPP9k2gHS4NoCEdAt3Ie/yoXK3V9lChoBkdAZrYW7e2uxWgHTegDaAhHQLdySfYjB2x1fZQoaAZHQEn3oduHerNoB0t4aAhHQLdyYIF/x2B1fZQoaAZHQEekearmyPdoB0uTaAhHQLdy5XVLBbh1fZQoaAZHQGGQcGkep4toB03oA2gIR0C3c0UC/47BdX2UKGgGR0BMF/D+BH09aAdLaGgIR0C3c+y2tuDSdX2UKGgGR0BliTKFIuoQaAdN6ANoCEdAt3QBiPQv6HV9lChoBkdAZKIMZxaPjmgHTegDaAhHQLd0kaBqbjN1fZQoaAZHQE0i+X7cfvFoB0ulaAhHQLd1QhJAdGR1fZQoaAZHQFCNliz9jwxoB0t+aAhHQLd2bC2+fyx1fZQoaAZHQGoBY3eenQ9oB03oA2gIR0C3d8tEw35vdX2UKGgGR0Bm/FDfFaStaAdN6ANoCEdAt3frV7Qb/HV9lChoBkdAYL1CWu5jIGgHTegDaAhHQLd4of5DZ151fZQoaAZHQGGdSe7L+xZoB03oA2gIR0C3eWJ0r9VFdX2UKGgGR0BFCRISUTtcaAdLXmgIR0C3ebsTviLmdX2UKGgGR8A4L3rD63y7aAdLcmgIR0C3eklO0svqdX2UKGgGR0BLuIZIg/1QaAdLYmgIR0C3fB5xFRYSdX2UKGgGR0BoFxvvSc9XaAdN6ANoCEdAt3wrQkX1rnV9lChoBkdAZD2KZUkv9WgHTegDaAhHQLd8iznied11fZQoaAZHQGC5kJ8fFJhoB03oA2gIR0C3feb+o99udX2UKGgGR0An01SflIVeaAdLdWgIR0C3fl4/A0sOdX2UKGgGR0Bgn2SZBsyjaAdN6ANoCEdAt3+Ah+vyLHV9lChoBkdAUcLk4m1IAmgHS4FoCEdAt4BnSG8Em3V9lChoBkdAZnl36hxo7GgHTegDaAhHQLeBcOfNA1N1fZQoaAZHQGOxwzch1T1oB03oA2gIR0C3gq28h9srdX2UKGgGR0BkB0XYUWVNaAdN6ANoCEdAt4LZ6Ww/xHV9lChoBkdAYfO51/2Cd2gHTegDaAhHQLeD4DpTuOV1fZQoaAZHQGTKMvRJEploB03oA2gIR0C3hJLPldTpdX2UKGgGR0BlEFhy8zyjaAdN6ANoCEdAt4Sm1jRUm3V9lChoBkdAZPQOhCdBjWgHTegDaAhHQLeGQv863iJ1fZQoaAZHQGRA6K1og3doB03oA2gIR0C3h9iwSrYHdX2UKGgGR0BkR8zGgi/xaAdN6ANoCEdAt4njRLK3eHV9lChoBkdAY9pvsJIDo2gHTegDaAhHQLeKe3Ov+wV1fZQoaAZHQGTsZflZHNJoB03oA2gIR0C3isDlDF6zdX2UKGgGR0BRQwgcLjPwaAdLgWgIR0C3i+v9Hc1wdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (151 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 282.27473679999997, "std_reward": 23.661376284915978, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-02T18:12:36.919772"}