--- library_name: transformers license: other base_model: llava-hf/llava-v1.6-mistral-7b-hf tags: - llama-factory - full - generated_from_trainer model-index: - name: AA_preference_cocour_new_step10_0_30 results: [] --- # AA_preference_cocour_new_step10_0_30 This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the AA_preference_cocour_new_step10_0_30 dataset. It achieves the following results on the evaluation set: - Loss: 0.5532 - Rewards/chosen: 1.6544 - Rewards/rejected: -1.2534 - Rewards/accuracies: 0.8056 - Rewards/margins: 2.9078 - Logps/rejected: -252.7311 - Logps/chosen: -241.2080 - Logits/rejected: -2.0966 - Logits/chosen: -2.1262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.2648 | 1.2422 | 50 | 0.5693 | 2.0296 | -0.4936 | 0.8125 | 2.5232 | -245.1335 | -237.4563 | -2.3209 | -2.3384 | | 0.1487 | 2.4845 | 100 | 0.5524 | 1.6519 | -1.2519 | 0.8125 | 2.9039 | -252.7170 | -241.2330 | -2.0940 | -2.1241 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.3