File size: 1,949 Bytes
e586a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wikisql
model-index:
- name: flan-t5-base-finetune
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-base-finetune

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the wikisql dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0966
- Rouge2 Precision: 0.8525
- Rouge2 Recall: 0.5466
- Rouge2 Fmeasure: 0.6549

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
| 0.162         | 1.0   | 2025  | 0.1235          | 0.8357           | 0.5366        | 0.6425          |
| 0.1277        | 2.0   | 4050  | 0.1082          | 0.8434           | 0.5413        | 0.6482          |
| 0.1142        | 3.0   | 6075  | 0.1000          | 0.8491           | 0.5443        | 0.6522          |
| 0.1063        | 4.0   | 8100  | 0.0978          | 0.8516           | 0.5464        | 0.6544          |
| 0.1           | 5.0   | 10125 | 0.0966          | 0.8525           | 0.5466        | 0.6549          |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3