--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: hos_sentiment_bert results: [] --- # hos_sentiment_bert This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2168 - F1: 0.9326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 40.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 1.0 | 331 | 0.2183 | 0.9258 | | 0.239 | 2.0 | 662 | 0.2168 | 0.9326 | | 0.239 | 3.0 | 993 | 0.2527 | 0.9282 | | 0.1255 | 4.0 | 1324 | 0.2896 | 0.9288 | | 0.0662 | 5.0 | 1655 | 0.3389 | 0.9266 | | 0.0662 | 6.0 | 1986 | 0.3793 | 0.9294 | | 0.0453 | 7.0 | 2317 | 0.4110 | 0.9252 | | 0.0257 | 8.0 | 2648 | 0.4656 | 0.9205 | | 0.0257 | 9.0 | 2979 | 0.4953 | 0.9263 | | 0.0196 | 10.0 | 3310 | 0.5412 | 0.9265 | | 0.0125 | 11.0 | 3641 | 0.5528 | 0.9245 | | 0.0125 | 12.0 | 3972 | 0.5527 | 0.9262 | | 0.0141 | 13.0 | 4303 | 0.5683 | 0.9276 | | 0.0097 | 14.0 | 4634 | 0.5835 | 0.9239 | | 0.0097 | 15.0 | 4965 | 0.5905 | 0.9280 | | 0.0107 | 16.0 | 5296 | 0.5799 | 0.9298 | | 0.009 | 17.0 | 5627 | 0.6127 | 0.9266 | | 0.009 | 18.0 | 5958 | 0.5911 | 0.9284 | | 0.0084 | 19.0 | 6289 | 0.5900 | 0.9303 | | 0.008 | 20.0 | 6620 | 0.5923 | 0.9283 | | 0.008 | 21.0 | 6951 | 0.6186 | 0.9305 | | 0.0068 | 22.0 | 7282 | 0.6076 | 0.9292 | | 0.0064 | 23.0 | 7613 | 0.5782 | 0.9303 | | 0.0064 | 24.0 | 7944 | 0.6077 | 0.9320 | | 0.0048 | 25.0 | 8275 | 0.6446 | 0.9282 | | 0.0046 | 26.0 | 8606 | 0.6417 | 0.9315 | | 0.0046 | 27.0 | 8937 | 0.6656 | 0.9283 | | 0.0053 | 28.0 | 9268 | 0.6541 | 0.9288 | | 0.0043 | 29.0 | 9599 | 0.6703 | 0.9277 | | 0.0043 | 30.0 | 9930 | 0.6871 | 0.9252 | | 0.0041 | 31.0 | 10261 | 0.6735 | 0.9286 | | 0.0034 | 32.0 | 10592 | 0.6651 | 0.9306 | | 0.0034 | 33.0 | 10923 | 0.6799 | 0.9305 | | 0.0032 | 34.0 | 11254 | 0.6753 | 0.9297 | | 0.0031 | 35.0 | 11585 | 0.6855 | 0.9310 | | 0.0031 | 36.0 | 11916 | 0.6885 | 0.9306 | | 0.003 | 37.0 | 12247 | 0.6960 | 0.9293 | | 0.0026 | 38.0 | 12578 | 0.6950 | 0.9292 | | 0.0026 | 39.0 | 12909 | 0.6964 | 0.9297 | | 0.0033 | 40.0 | 13240 | 0.6954 | 0.9290 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0