--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta_large_hostel_ner results: [] --- # roberta_large_hostel_ner This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0480 - Precision: 0.6916 - Recall: 0.7347 - F1: 0.7125 - Accuracy: 0.8223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 307 | 0.6049 | 0.5460 | 0.6836 | 0.6071 | 0.8031 | | 0.7077 | 2.0 | 614 | 0.5622 | 0.5902 | 0.7044 | 0.6423 | 0.8194 | | 0.7077 | 3.0 | 921 | 0.6149 | 0.6159 | 0.7155 | 0.6620 | 0.8174 | | 0.3967 | 4.0 | 1228 | 0.6661 | 0.5917 | 0.7185 | 0.6490 | 0.8112 | | 0.2371 | 5.0 | 1535 | 0.7497 | 0.6154 | 0.7145 | 0.6612 | 0.8126 | | 0.2371 | 6.0 | 1842 | 0.8418 | 0.6138 | 0.7293 | 0.6666 | 0.8059 | | 0.1496 | 7.0 | 2149 | 0.8446 | 0.6258 | 0.7231 | 0.6710 | 0.8190 | | 0.1496 | 8.0 | 2456 | 0.9823 | 0.6399 | 0.7229 | 0.6789 | 0.8150 | | 0.1073 | 9.0 | 2763 | 0.9789 | 0.6372 | 0.7235 | 0.6776 | 0.8163 | | 0.0792 | 10.0 | 3070 | 1.0675 | 0.6607 | 0.7254 | 0.6915 | 0.8219 | | 0.0792 | 11.0 | 3377 | 1.1495 | 0.6471 | 0.7306 | 0.6863 | 0.8129 | | 0.0584 | 12.0 | 3684 | 1.1720 | 0.6313 | 0.7254 | 0.6751 | 0.8122 | | 0.0584 | 13.0 | 3991 | 1.2905 | 0.6484 | 0.7246 | 0.6844 | 0.8080 | | 0.0476 | 14.0 | 4298 | 1.3109 | 0.6515 | 0.7258 | 0.6867 | 0.8143 | | 0.0321 | 15.0 | 4605 | 1.3268 | 0.6500 | 0.7256 | 0.6857 | 0.8123 | | 0.0321 | 16.0 | 4912 | 1.4593 | 0.6482 | 0.7218 | 0.6830 | 0.8089 | | 0.027 | 17.0 | 5219 | 1.4810 | 0.6559 | 0.7268 | 0.6895 | 0.8117 | | 0.0242 | 18.0 | 5526 | 1.4636 | 0.6321 | 0.7193 | 0.6729 | 0.8098 | | 0.0242 | 19.0 | 5833 | 1.5093 | 0.6640 | 0.7301 | 0.6955 | 0.8187 | | 0.0188 | 20.0 | 6140 | 1.4944 | 0.6690 | 0.7240 | 0.6954 | 0.8178 | | 0.0188 | 21.0 | 6447 | 1.5568 | 0.6550 | 0.7232 | 0.6874 | 0.8155 | | 0.0164 | 22.0 | 6754 | 1.6352 | 0.6786 | 0.7215 | 0.6994 | 0.8176 | | 0.0118 | 23.0 | 7061 | 1.6460 | 0.6674 | 0.7327 | 0.6985 | 0.8188 | | 0.0118 | 24.0 | 7368 | 1.6089 | 0.6781 | 0.7300 | 0.7031 | 0.8223 | | 0.0112 | 25.0 | 7675 | 1.7131 | 0.6635 | 0.7340 | 0.6970 | 0.8162 | | 0.0112 | 26.0 | 7982 | 1.7572 | 0.6759 | 0.7313 | 0.7025 | 0.8185 | | 0.0083 | 27.0 | 8289 | 1.7329 | 0.6726 | 0.7228 | 0.6968 | 0.8197 | | 0.006 | 28.0 | 8596 | 1.8310 | 0.6684 | 0.7337 | 0.6995 | 0.8172 | | 0.006 | 29.0 | 8903 | 1.8690 | 0.6692 | 0.7368 | 0.7014 | 0.8162 | | 0.0059 | 30.0 | 9210 | 1.9132 | 0.6785 | 0.7283 | 0.7025 | 0.8173 | | 0.0049 | 31.0 | 9517 | 1.8567 | 0.6856 | 0.7294 | 0.7068 | 0.8223 | | 0.0049 | 32.0 | 9824 | 1.9176 | 0.6773 | 0.7320 | 0.7036 | 0.8217 | | 0.0044 | 33.0 | 10131 | 1.9170 | 0.6843 | 0.7340 | 0.7083 | 0.8214 | | 0.0044 | 34.0 | 10438 | 1.9416 | 0.6810 | 0.7371 | 0.7080 | 0.8196 | | 0.004 | 35.0 | 10745 | 1.8975 | 0.6654 | 0.7332 | 0.6977 | 0.8215 | | 0.0038 | 36.0 | 11052 | 1.9453 | 0.6877 | 0.7373 | 0.7116 | 0.8177 | | 0.0038 | 37.0 | 11359 | 1.9305 | 0.6787 | 0.7342 | 0.7054 | 0.8179 | | 0.002 | 38.0 | 11666 | 1.9255 | 0.6745 | 0.7313 | 0.7017 | 0.8202 | | 0.002 | 39.0 | 11973 | 1.9737 | 0.6816 | 0.7329 | 0.7063 | 0.8196 | | 0.0016 | 40.0 | 12280 | 1.9903 | 0.6838 | 0.7339 | 0.7080 | 0.8190 | | 0.0018 | 41.0 | 12587 | 1.9903 | 0.6882 | 0.7365 | 0.7115 | 0.8224 | | 0.0018 | 42.0 | 12894 | 1.9753 | 0.6802 | 0.7364 | 0.7072 | 0.8228 | | 0.001 | 43.0 | 13201 | 2.0004 | 0.6904 | 0.7345 | 0.7118 | 0.8222 | | 0.0007 | 44.0 | 13508 | 2.0058 | 0.6825 | 0.7357 | 0.7081 | 0.8225 | | 0.0007 | 45.0 | 13815 | 2.0355 | 0.6874 | 0.7357 | 0.7107 | 0.8228 | | 0.0006 | 46.0 | 14122 | 2.0481 | 0.6912 | 0.7346 | 0.7122 | 0.8226 | | 0.0006 | 47.0 | 14429 | 2.0460 | 0.6900 | 0.7338 | 0.7112 | 0.8220 | | 0.0004 | 48.0 | 14736 | 2.0553 | 0.6911 | 0.7364 | 0.7130 | 0.8224 | | 0.0003 | 49.0 | 15043 | 2.0499 | 0.6918 | 0.7346 | 0.7125 | 0.8224 | | 0.0003 | 50.0 | 15350 | 2.0480 | 0.6916 | 0.7347 | 0.7125 | 0.8223 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0