a2c-PandaReachDense-v2 / config.json
hugfacerhaha's picture
Initial commit
a9f1625
raw
history blame
15.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7dd1657a13f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dd165799140>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690548999955012557, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANNmfPuaHibpIMwE/NNmfPuaHibpIMwE/NNmfPuaHibpIMwE/NNmfPuaHibpIMwE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATwFDvrd9QL+vnmQ9NwmzPyhTi77BR7w/jwvCvJRs1L/LHki+DGTavylksb+4SMm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA02Z8+5oeJukgzAT+ru5W8WXuiug4o5zc02Z8+5oeJukgzAT+ru5W8WXuiug4o5zc02Z8+5oeJukgzAT+ru5W8WXuiug4o5zc02Z8+5oeJukgzAT+ru5W8WXuiug4o5zeUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.312204 -0.00104928 0.50468874]\n [ 0.312204 -0.00104928 0.50468874]\n [ 0.312204 -0.00104928 0.50468874]\n [ 0.312204 -0.00104928 0.50468874]]", "desired_goal": "[[-0.19043468 -0.75191826 0.05581539]\n [ 1.3987187 -0.2721188 1.4709398 ]\n [-0.02368715 -1.6595635 -0.19542997]\n [-1.7061782 -1.3858691 -1.5725317 ]]", "observation": "[[ 3.1220400e-01 -1.0492771e-03 5.0468874e-01 -1.8277964e-02\n -1.2396380e-03 2.7555998e-05]\n [ 3.1220400e-01 -1.0492771e-03 5.0468874e-01 -1.8277964e-02\n -1.2396380e-03 2.7555998e-05]\n [ 3.1220400e-01 -1.0492771e-03 5.0468874e-01 -1.8277964e-02\n -1.2396380e-03 2.7555998e-05]\n [ 3.1220400e-01 -1.0492771e-03 5.0468874e-01 -1.8277964e-02\n -1.2396380e-03 2.7555998e-05]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAu+A3Pa/SiLxHDC0+Cwd+O0U7pb1tGIQ+K45qvXW+FL2EJUs97sBBPJUgOT21AVk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.04489205 -0.01670202 0.16899215]\n [ 0.00387615 -0.08067945 0.25799885]\n [-0.05726449 -0.03631445 0.04959632]\n [ 0.01182578 0.04519709 0.21192057]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKv9aXrke8L+UhpRSlIwBbJRLMowBdJRHQH9nPEwWWQh1fZQoaAZoCWgPQwgN+tLbnwvnv5SGlFKUaBVLMmgWR0B/ZVLQHAymdX2UKGgGaAloD0MIwCK/fojN8b+UhpRSlGgVSzJoFkdAf2NZiuuA7XV9lChoBmgJaA9DCEbqPZXTHuy/lIaUUpRoFUsyaBZHQH9g7QLNOdp1fZQoaAZoCWgPQwjo+j4cJETov5SGlFKUaBVLMmgWR0B/b4fV7Qb/dX2UKGgGaAloD0MIqWxYU1kU8L+UhpRSlGgVSzJoFkdAf22dgOSW7nV9lChoBmgJaA9DCKZEEr2M4u6/lIaUUpRoFUsyaBZHQH9roPK+zt11fZQoaAZoCWgPQwjEzalkACjwv5SGlFKUaBVLMmgWR0B/aTTnaFmGdX2UKGgGaAloD0MIAg6hSs1e87+UhpRSlGgVSzJoFkdAf3g3YcvM83V9lChoBmgJaA9DCPRtwVJdgPG/lIaUUpRoFUsyaBZHQH92UliSaE11fZQoaAZoCWgPQwiI9rGC30bzv5SGlFKUaBVLMmgWR0B/dFsqJ/G3dX2UKGgGaAloD0MIEEBqEyf38b+UhpRSlGgVSzJoFkdAf3HyaNMoMXV9lChoBmgJaA9DCBpuwOeHkeu/lIaUUpRoFUsyaBZHQH+EFtTDO1R1fZQoaAZoCWgPQwitwfuqXKjqv5SGlFKUaBVLMmgWR0B/gjO5avA5dX2UKGgGaAloD0MIgsr49xmX67+UhpRSlGgVSzJoFkdAf4A8r7O3UnV9lChoBmgJaA9DCErP9BJjme6/lIaUUpRoFUsyaBZHQH9909yLhrF1fZQoaAZoCWgPQwiJmX0eo7zsv5SGlFKUaBVLMmgWR0B/kRVfeDWcdX2UKGgGaAloD0MIB7Xf2okS6b+UhpRSlGgVSzJoFkdAf48wyIpH7XV9lChoBmgJaA9DCDM1Cd6QhvO/lIaUUpRoFUsyaBZHQH+NOCTUy591fZQoaAZoCWgPQwgoYabtX9nwv5SGlFKUaBVLMmgWR0B/itAcDKYBdX2UKGgGaAloD0MI2AsFbAcj7L+UhpRSlGgVSzJoFkdAf5204R28qXV9lChoBmgJaA9DCIbI6ev5muq/lIaUUpRoFUsyaBZHQH+b0SVW0Z51fZQoaAZoCWgPQwjsGFdcHBXpv5SGlFKUaBVLMmgWR0B/mdoHs1KodX2UKGgGaAloD0MI1qwzvi+u8L+UhpRSlGgVSzJoFkdAf5dvMr3CbnV9lChoBmgJaA9DCJOP3QVKiu6/lIaUUpRoFUsyaBZHQH+q3/HYHxB1fZQoaAZoCWgPQwg98DFYcWrxv5SGlFKUaBVLMmgWR0B/qPxhDw6RdX2UKGgGaAloD0MIVMVU+gnn7L+UhpRSlGgVSzJoFkdAf6cGaQV9GHV9lChoBmgJaA9DCG5qoPmcO+2/lIaUUpRoFUsyaBZHQH+kn9aUzKt1fZQoaAZoCWgPQwgv3/qw3mj0v5SGlFKUaBVLMmgWR0B/tWErXlKcdX2UKGgGaAloD0MIITtvY7Pj8L+UhpRSlGgVSzJoFkdAf7N4+8oQWnV9lChoBmgJaA9DCO+QYoBEE+6/lIaUUpRoFUsyaBZHQH+xe5nUUfx1fZQoaAZoCWgPQwjmPjkKEAXrv5SGlFKUaBVLMmgWR0B/rw0EX+ERdX2UKGgGaAloD0MIb4Jvmj478L+UhpRSlGgVSzJoFkdAf73Dp1RtQHV9lChoBmgJaA9DCF+bjZWYJ/C/lIaUUpRoFUsyaBZHQH+72wmmce91fZQoaAZoCWgPQwjnUlxV9l3wv5SGlFKUaBVLMmgWR0B/ud8twrDqdX2UKGgGaAloD0MIuLHZkeo78L+UhpRSlGgVSzJoFkdAf7dw/PgNw3V9lChoBmgJaA9DCNoB1xUzQuy/lIaUUpRoFUsyaBZHQH/FpqASWZ91fZQoaAZoCWgPQwhhONcwQ+Ppv5SGlFKUaBVLMmgWR0B/w8IzFdcCdX2UKGgGaAloD0MIwD+lSpT997+UhpRSlGgVSzJoFkdAf8HIy0rsjXV9lChoBmgJaA9DCK0UArnEEfC/lIaUUpRoFUsyaBZHQH+/XRkVerx1fZQoaAZoCWgPQwitGK4OgPjxv5SGlFKUaBVLMmgWR0B/zczKs+3ZdX2UKGgGaAloD0MIkMAffv678b+UhpRSlGgVSzJoFkdAf8vjHGS6lXV9lChoBmgJaA9DCCPXTSmvley/lIaUUpRoFUsyaBZHQH/J5WmxdIJ1fZQoaAZoCWgPQwj/BBcrarD0v5SGlFKUaBVLMmgWR0B/x3cqOLiudX2UKGgGaAloD0MIb2OzI9V37r+UhpRSlGgVSzJoFkdAf9WkcS5AhXV9lChoBmgJaA9DCHrE6LmFbvO/lIaUUpRoFUsyaBZHQH/Tvwd8zAN1fZQoaAZoCWgPQwjecYqO5PLsv5SGlFKUaBVLMmgWR0B/0cYMvyskdX2UKGgGaAloD0MIalA0D2CR9b+UhpRSlGgVSzJoFkdAf89w97ngYXV9lChoBmgJaA9DCHBdMSO8Pe2/lIaUUpRoFUsyaBZHQH/eBufmLcd1fZQoaAZoCWgPQwhW9fI7TWbtv5SGlFKUaBVLMmgWR0B/3Bw0fozOdX2UKGgGaAloD0MI95ScE3vo8r+UhpRSlGgVSzJoFkdAf9of/FR51XV9lChoBmgJaA9DCA6ki00rBee/lIaUUpRoFUsyaBZHQH/Xsf7rLQp1fZQoaAZoCWgPQwgq5iDoaFXnv5SGlFKUaBVLMmgWR0B/5hcqvvBrdX2UKGgGaAloD0MISP5g4Ll36r+UhpRSlGgVSzJoFkdAf+Qt7a7EpHV9lChoBmgJaA9DCBzw+WGEcOq/lIaUUpRoFUsyaBZHQH/iMyi22G91fZQoaAZoCWgPQwhdh2pKsg7pv5SGlFKUaBVLMmgWR0B/38TURWcSdX2UKGgGaAloD0MItp22RgTj6L+UhpRSlGgVSzJoFkdAf+3AlOXVsnV9lChoBmgJaA9DCPpgGRu6Wea/lIaUUpRoFUsyaBZHQH/r11r6+Fl1fZQoaAZoCWgPQwg5ud+hKFDvv5SGlFKUaBVLMmgWR0B/6dwZOzppdX2UKGgGaAloD0MI9ntinSrf8L+UhpRSlGgVSzJoFkdAf+duZkTYd3V9lChoBmgJaA9DCAlOfSB5Z+a/lIaUUpRoFUsyaBZHQH/12ys0YTF1fZQoaAZoCWgPQwj2CDVDqqjuv5SGlFKUaBVLMmgWR0B/8/CJoCdSdX2UKGgGaAloD0MICtY4m44A7r+UhpRSlGgVSzJoFkdAf/H4+r2g4HV9lChoBmgJaA9DCIHR5c3hGvO/lIaUUpRoFUsyaBZHQH/viw8nuzB1fZQoaAZoCWgPQwjYDdsWZbblv5SGlFKUaBVLMmgWR0B//aYIBzV+dX2UKGgGaAloD0MIeJs3Tgrz6b+UhpRSlGgVSzJoFkdAf/u9XtBv73V9lChoBmgJaA9DCKVneomxzOy/lIaUUpRoFUsyaBZHQH/5wFxGUfR1fZQoaAZoCWgPQwgAGqVL/xLrv5SGlFKUaBVLMmgWR0B/91F+d9UkdX2UKGgGaAloD0MI078klSmm8L+UhpRSlGgVSzJoFkdAgAMKZc9nsnV9lChoBmgJaA9DCFbT9UTXhe+/lIaUUpRoFUsyaBZHQIACFonKGL11fZQoaAZoCWgPQwi3YRQEj2/pv5SGlFKUaBVLMmgWR0CAARiLl3hXdX2UKGgGaAloD0MIn82qz9VW7L+UhpRSlGgVSzJoFkdAf//DvE0iyXV9lChoBmgJaA9DCPcdw2M/i+m/lIaUUpRoFUsyaBZHQIAHOKhtcfN1fZQoaAZoCWgPQwiwjA3d7I/rv5SGlFKUaBVLMmgWR0CABkQgcLjQdX2UKGgGaAloD0MIUKbR5GIM77+UhpRSlGgVSzJoFkdAgAVFrM1TBXV9lChoBmgJaA9DCCY3iqw1FOi/lIaUUpRoFUsyaBZHQIAEDlxOtXB1fZQoaAZoCWgPQwjX22YqxOPwv5SGlFKUaBVLMmgWR0CAC0MqjJuEdX2UKGgGaAloD0MIJO1GH/MB77+UhpRSlGgVSzJoFkdAgApN70Fr23V9lChoBmgJaA9DCFByh01k5vC/lIaUUpRoFUsyaBZHQIAJUA5q/M51fZQoaAZoCWgPQwhIUz2Zf/Tnv5SGlFKUaBVLMmgWR0CACBmW+oLodX2UKGgGaAloD0MIdZFCWfh67b+UhpRSlGgVSzJoFkdAgA8gYgq3E3V9lChoBmgJaA9DCNlfdk8elu2/lIaUUpRoFUsyaBZHQIAOLABT4tZ1fZQoaAZoCWgPQwiokCv1LEjwv5SGlFKUaBVLMmgWR0CADS2OyVv/dX2UKGgGaAloD0MIeOxnsRTJ7r+UhpRSlGgVSzJoFkdAgAv2XkYGdXV9lChoBmgJaA9DCIKsp1ZfXei/lIaUUpRoFUsyaBZHQIATQT0xubZ1fZQoaAZoCWgPQwglBKvq5Xfqv5SGlFKUaBVLMmgWR0CAEkwpON5udX2UKGgGaAloD0MIPzc0Zacf7L+UhpRSlGgVSzJoFkdAgBFObRWtEHV9lChoBmgJaA9DCC7JAbuafPC/lIaUUpRoFUsyaBZHQIAQFtl7MPl1fZQoaAZoCWgPQwiiXvBpTl7pv5SGlFKUaBVLMmgWR0CAFzNJOFg2dX2UKGgGaAloD0MI5pKq7SZ46r+UhpRSlGgVSzJoFkdAgBY+FcpsoHV9lChoBmgJaA9DCA1QGmoUEui/lIaUUpRoFUsyaBZHQIAVP7iyY5V1fZQoaAZoCWgPQwj1ona/CnDmv5SGlFKUaBVLMmgWR0CAFAkNWluWdX2UKGgGaAloD0MIwmuXNhzW8b+UhpRSlGgVSzJoFkdAgBsqnNxEOXV9lChoBmgJaA9DCEYGuYswxe+/lIaUUpRoFUsyaBZHQIAaNYbKifx1fZQoaAZoCWgPQwiU+rK0UzP1v5SGlFKUaBVLMmgWR0CAGTe4TbnHdX2UKGgGaAloD0MIXaj8a3kl9b+UhpRSlGgVSzJoFkdAgBgBFNL13HV9lChoBmgJaA9DCFVrYRbauey/lIaUUpRoFUsyaBZHQIAfIPVd5Y51fZQoaAZoCWgPQwg08+SaApnxv5SGlFKUaBVLMmgWR0CAHixwhnrZdX2UKGgGaAloD0MIf/lkxXB18L+UhpRSlGgVSzJoFkdAgB0u0TlDGHV9lChoBmgJaA9DCKexvRb0nvC/lIaUUpRoFUsyaBZHQIAb97Y02tN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}