osanseviero
commited on
Commit
•
560a4cb
1
Parent(s):
4912c62
Create pipeline.py
Browse files- pipeline.py +59 -0
pipeline.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from huggingface_hub import PyTorchModelHubMixin
|
4 |
+
|
5 |
+
class Generator(nn.Module, PyTorchModelHubMixin):
|
6 |
+
def __init__(self, num_channels=3, latent_dim=100, hidden_size=64):
|
7 |
+
super(Generator, self).__init__()
|
8 |
+
self.model = nn.Sequential(
|
9 |
+
# input is Z, going into a convolution
|
10 |
+
nn.ConvTranspose2d(latent_dim, hidden_size * 8, 4, 1, 0, bias=False),
|
11 |
+
nn.BatchNorm2d(hidden_size * 8),
|
12 |
+
nn.ReLU(True),
|
13 |
+
# state size. (hidden_size*8) x 4 x 4
|
14 |
+
nn.ConvTranspose2d(hidden_size * 8, hidden_size * 4, 4, 2, 1, bias=False),
|
15 |
+
nn.BatchNorm2d(hidden_size * 4),
|
16 |
+
nn.ReLU(True),
|
17 |
+
# state size. (hidden_size*4) x 8 x 8
|
18 |
+
nn.ConvTranspose2d(hidden_size * 4, hidden_size * 2, 4, 2, 1, bias=False),
|
19 |
+
nn.BatchNorm2d(hidden_size * 2),
|
20 |
+
nn.ReLU(True),
|
21 |
+
# state size. (hidden_size*2) x 16 x 16
|
22 |
+
nn.ConvTranspose2d(hidden_size * 2, hidden_size, 4, 2, 1, bias=False),
|
23 |
+
nn.BatchNorm2d(hidden_size),
|
24 |
+
nn.ReLU(True),
|
25 |
+
# state size. (hidden_size) x 32 x 32
|
26 |
+
nn.ConvTranspose2d(hidden_size, num_channels, 4, 2, 1, bias=False),
|
27 |
+
nn.Tanh()
|
28 |
+
# state size. (num_channels) x 64 x 64
|
29 |
+
)
|
30 |
+
|
31 |
+
def forward(self, noise):
|
32 |
+
pixel_values = self.model(noise)
|
33 |
+
|
34 |
+
return pixel_values
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
class PreTrainedPipeline():
|
39 |
+
def __init__(self, path=""):
|
40 |
+
"""
|
41 |
+
Initialize model
|
42 |
+
"""
|
43 |
+
self.model = model = Generator.from_pretrained("huggan/dcgan-mnist")
|
44 |
+
|
45 |
+
def __call__(self, inputs: str):
|
46 |
+
"""
|
47 |
+
Args:
|
48 |
+
inputs (:obj:`str`):
|
49 |
+
a string containing some text
|
50 |
+
Return:
|
51 |
+
A :obj:`PIL.Image` with the raw image representation as PIL.
|
52 |
+
"""
|
53 |
+
noise = torch.randn(1, 100, 1, 1, device=device)
|
54 |
+
with torch.no_grad():
|
55 |
+
output = self.model(noise)
|
56 |
+
|
57 |
+
# Scale image
|
58 |
+
img = transforms.ToPILImage()(output)
|
59 |
+
return img
|