import torch import torch.nn as nn from huggingface_hub import PyTorchModelHubMixin class Generator(nn.Module, PyTorchModelHubMixin): def __init__(self, num_channels=3, latent_dim=100, hidden_size=64): super(Generator, self).__init__() self.model = nn.Sequential( # input is Z, going into a convolution nn.ConvTranspose2d(latent_dim, hidden_size * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(hidden_size * 8), nn.ReLU(True), # state size. (hidden_size*8) x 4 x 4 nn.ConvTranspose2d(hidden_size * 8, hidden_size * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(hidden_size * 4), nn.ReLU(True), # state size. (hidden_size*4) x 8 x 8 nn.ConvTranspose2d(hidden_size * 4, hidden_size * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(hidden_size * 2), nn.ReLU(True), # state size. (hidden_size*2) x 16 x 16 nn.ConvTranspose2d(hidden_size * 2, hidden_size, 4, 2, 1, bias=False), nn.BatchNorm2d(hidden_size), nn.ReLU(True), # state size. (hidden_size) x 32 x 32 nn.ConvTranspose2d(hidden_size, num_channels, 4, 2, 1, bias=False), nn.Tanh() # state size. (num_channels) x 64 x 64 ) def forward(self, noise): pixel_values = self.model(noise) return pixel_values class PreTrainedPipeline(): def __init__(self, path=""): """ Initialize model """ self.model = model = Generator.from_pretrained("huggan/dcgan-mnist") def __call__(self, inputs: str): """ Args: inputs (:obj:`str`): a string containing some text Return: A :obj:`PIL.Image` with the raw image representation as PIL. """ noise = torch.randn(1, 100, 1, 1, device=device) with torch.no_grad(): output = self.model(noise) # Scale image img = transforms.ToPILImage()(output) return img