AlekseyKorshuk commited on
Commit
79b47b3
·
1 Parent(s): bd84f82

huggingartists

Browse files
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - huggingartists/headie-one
5
+ tags:
6
+ - huggingartists
7
+ - lyrics
8
+ - lm-head
9
+ - causal-lm
10
+ widget:
11
+ - text: "I am"
12
+ ---
13
+
14
+ <div class="inline-flex flex-col" style="line-height: 1.5;">
15
+ <div class="flex">
16
+ <div
17
+ style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/f803e312226f5034989742ff1fb4b583.1000x1000x1.jpg&#39;)">
18
+ </div>
19
+ </div>
20
+ <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
21
+ <div style="text-align: center; font-size: 16px; font-weight: 800">Headie One</div>
22
+ <a href="https://genius.com/artists/headie-one">
23
+ <div style="text-align: center; font-size: 14px;">@headie-one</div>
24
+ </a>
25
+ </div>
26
+
27
+ I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
28
+
29
+ Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
30
+
31
+ ## How does it work?
32
+
33
+ To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
34
+
35
+ ## Training data
36
+
37
+ The model was trained on lyrics from Headie One.
38
+
39
+ Dataset is available [here](https://huggingface.co/datasets/huggingartists/headie-one).
40
+ And can be used with:
41
+
42
+ ```python
43
+ from datasets import load_dataset
44
+
45
+ dataset = load_dataset("huggingartists/headie-one")
46
+ ```
47
+
48
+ [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/x7sbsok3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
49
+
50
+ ## Training procedure
51
+
52
+ The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Headie One's lyrics.
53
+
54
+ Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/23dok566) for full transparency and reproducibility.
55
+
56
+ At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/23dok566/artifacts) is logged and versioned.
57
+
58
+ ## How to use
59
+
60
+ You can use this model directly with a pipeline for text generation:
61
+
62
+ ```python
63
+ from transformers import pipeline
64
+ generator = pipeline('text-generation',
65
+ model='huggingartists/headie-one')
66
+ generator("I am", num_return_sequences=5)
67
+ ```
68
+
69
+ Or with Transformers library:
70
+
71
+ ```python
72
+ from transformers import AutoTokenizer, AutoModelWithLMHead
73
+
74
+ tokenizer = AutoTokenizer.from_pretrained("huggingartists/headie-one")
75
+
76
+ model = AutoModelWithLMHead.from_pretrained("huggingartists/headie-one")
77
+ ```
78
+
79
+ ## Limitations and bias
80
+
81
+ The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
82
+
83
+ In addition, the data present in the user's tweets further affects the text generated by the model.
84
+
85
+ ## About
86
+
87
+ *Built by Aleksey Korshuk*
88
+
89
+ [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk)
90
+
91
+ [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
92
+
93
+ [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
94
+
95
+ For more details, visit the project repository.
96
+
97
+ [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "headie-one",
3
+ "activation_function": "gelu_new",
4
+ "architectures": [
5
+ "GPT2LMHeadModel"
6
+ ],
7
+ "attn_pdrop": 0.1,
8
+ "bos_token_id": 50256,
9
+ "embd_pdrop": 0.1,
10
+ "eos_token_id": 50256,
11
+ "initializer_range": 0.02,
12
+ "layer_norm_epsilon": 1e-05,
13
+ "model_type": "gpt2",
14
+ "n_ctx": 1024,
15
+ "n_embd": 768,
16
+ "n_head": 12,
17
+ "n_inner": null,
18
+ "n_layer": 12,
19
+ "n_positions": 1024,
20
+ "reorder_and_upcast_attn": false,
21
+ "resid_pdrop": 0.1,
22
+ "scale_attn_by_inverse_layer_idx": false,
23
+ "scale_attn_weights": true,
24
+ "summary_activation": null,
25
+ "summary_first_dropout": 0.1,
26
+ "summary_proj_to_labels": true,
27
+ "summary_type": "cls_index",
28
+ "summary_use_proj": true,
29
+ "task_specific_params": {
30
+ "text-generation": {
31
+ "do_sample": true,
32
+ "max_length": 200,
33
+ "min_length": 100,
34
+ "temperature": 1.0,
35
+ "top_p": 0.95
36
+ }
37
+ },
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.20.0",
40
+ "use_cache": true,
41
+ "vocab_size": 50257
42
+ }
evaluation.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eval_loss": 1.6784825325012207, "eval_runtime": 1.6409, "eval_samples_per_second": 40.831, "eval_steps_per_second": 5.485, "epoch": 10.0}
flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fecd751b5700963f44c2ee402ff0b7a4c67e61624a859a934f710eb191c45a74
3
+ size 497764120
headie-one.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Lyrics dataset parsed from Genius"""
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+ import gzip
22
+
23
+ import datasets
24
+
25
+
26
+ _CITATION = """\
27
+ @InProceedings{huggingartists:dataset,
28
+ title = {Lyrics dataset},
29
+ author={Aleksey Korshuk
30
+ },
31
+ year={2021}
32
+ }
33
+ """
34
+
35
+
36
+ _DESCRIPTION = """\
37
+ This dataset is designed to generate lyrics with HuggingArtists.
38
+ """
39
+
40
+ # Add a link to an official homepage for the dataset here
41
+ _HOMEPAGE = "https://github.com/AlekseyKorshuk/huggingartists"
42
+
43
+ # Add the licence for the dataset here if you can find it
44
+ _LICENSE = "All rights belong to copyright holders"
45
+
46
+ _URL = "https://huggingface.co/datasets/huggingartists/rammstein/resolve/main/datasets.json"
47
+
48
+ # Name of the dataset
49
+ class LyricsDataset(datasets.GeneratorBasedBuilder):
50
+ """Lyrics dataset"""
51
+
52
+ VERSION = datasets.Version("1.0.0")
53
+
54
+ def _info(self):
55
+ # This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
56
+ features = datasets.Features(
57
+ {
58
+ "text": datasets.Value("string"),
59
+ }
60
+ )
61
+ return datasets.DatasetInfo(
62
+ # This is the description that will appear on the datasets page.
63
+ description=_DESCRIPTION,
64
+ # This defines the different columns of the dataset and their types
65
+ features=features, # Here we define them above because they are different between the two configurations
66
+ # If there's a common (input, target) tuple from the features,
67
+ # specify them here. They'll be used if as_supervised=True in
68
+ # builder.as_dataset.
69
+ supervised_keys=None,
70
+ # Homepage of the dataset for documentation
71
+ homepage=_HOMEPAGE,
72
+ # License for the dataset if available
73
+ license=_LICENSE,
74
+ # Citation for the dataset
75
+ citation=_CITATION,
76
+ )
77
+
78
+ def _split_generators(self, dl_manager):
79
+ """Returns SplitGenerators."""
80
+ # This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
81
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
82
+
83
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
84
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
85
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
86
+
87
+ data_dir = dl_manager.download_and_extract(_URL)
88
+ return [
89
+ datasets.SplitGenerator(
90
+ name=datasets.Split.TRAIN,
91
+ # These kwargs will be passed to _generate_examples
92
+ gen_kwargs={
93
+ "filepath": data_dir,
94
+ "split": "train",
95
+ },
96
+ ),
97
+ ]
98
+
99
+
100
+ def _generate_examples(self, filepath, split):
101
+ """Yields examples as (key, example) tuples."""
102
+ # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
103
+
104
+ with open(filepath, encoding="utf-8") as f:
105
+ data = json.load(f)
106
+ for id, pred in enumerate(data[split]):
107
+ yield id, {"text": pred}
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d097a87db35207ad3d05130da50e9ebb55fa07513c0df666ca52f27cb06b358
3
+ size 995604017
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90d824a120c62c3e83dd6a73c662684e5dbd1b4b707b29c9ebf5e0acf99da375
3
+ size 510396521
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66929c1ab9e7989bb184f169bf7f2442be88e09dfd4b503a328757b1b59345f6
3
+ size 14567
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48279aa48ac21cf8f06ef968c16ddaba90d867b569da938adf4544c7aea84cf0
3
+ size 623
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "unk_token": "<|endoftext|>"
5
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<|endoftext|>",
4
+ "eos_token": "<|endoftext|>",
5
+ "model_max_length": 1024,
6
+ "name_or_path": "gpt2",
7
+ "special_tokens_map_file": null,
8
+ "tokenizer_class": "GPT2Tokenizer",
9
+ "unk_token": "<|endoftext|>"
10
+ }
trainer_state.json ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.6784825325012207,
3
+ "best_model_checkpoint": "output/headie-one/checkpoint-423",
4
+ "epoch": 9.0,
5
+ "global_step": 423,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.11,
12
+ "learning_rate": 0.00013340429968430322,
13
+ "loss": 3.3897,
14
+ "step": 5
15
+ },
16
+ {
17
+ "epoch": 0.21,
18
+ "learning_rate": 0.00012243723783011615,
19
+ "loss": 3.2804,
20
+ "step": 10
21
+ },
22
+ {
23
+ "epoch": 0.32,
24
+ "learning_rate": 0.00010551244942700737,
25
+ "loss": 3.1867,
26
+ "step": 15
27
+ },
28
+ {
29
+ "epoch": 0.43,
30
+ "learning_rate": 8.450286230835245e-05,
31
+ "loss": 3.1078,
32
+ "step": 20
33
+ },
34
+ {
35
+ "epoch": 0.53,
36
+ "learning_rate": 6.173343555458685e-05,
37
+ "loss": 2.9997,
38
+ "step": 25
39
+ },
40
+ {
41
+ "epoch": 0.64,
42
+ "learning_rate": 3.972387529741623e-05,
43
+ "loss": 3.037,
44
+ "step": 30
45
+ },
46
+ {
47
+ "epoch": 0.74,
48
+ "learning_rate": 2.090979946151954e-05,
49
+ "loss": 2.8067,
50
+ "step": 35
51
+ },
52
+ {
53
+ "epoch": 0.85,
54
+ "learning_rate": 7.373207860012155e-06,
55
+ "loss": 2.6461,
56
+ "step": 40
57
+ },
58
+ {
59
+ "epoch": 0.96,
60
+ "learning_rate": 6.1208431258209e-07,
61
+ "loss": 2.7311,
62
+ "step": 45
63
+ },
64
+ {
65
+ "epoch": 1.0,
66
+ "eval_loss": 2.646137237548828,
67
+ "eval_runtime": 1.4447,
68
+ "eval_samples_per_second": 46.378,
69
+ "eval_steps_per_second": 6.23,
70
+ "step": 47
71
+ },
72
+ {
73
+ "epoch": 1.06,
74
+ "learning_rate": 1.3746270344901413e-06,
75
+ "loss": 2.8414,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 1.17,
80
+ "learning_rate": 9.576451662754438e-06,
81
+ "loss": 2.7047,
82
+ "step": 55
83
+ },
84
+ {
85
+ "epoch": 1.28,
86
+ "learning_rate": 2.4309929383066146e-05,
87
+ "loss": 2.7129,
88
+ "step": 60
89
+ },
90
+ {
91
+ "epoch": 1.38,
92
+ "learning_rate": 4.3944626783346644e-05,
93
+ "loss": 2.7639,
94
+ "step": 65
95
+ },
96
+ {
97
+ "epoch": 1.49,
98
+ "learning_rate": 6.630773257727353e-05,
99
+ "loss": 2.67,
100
+ "step": 70
101
+ },
102
+ {
103
+ "epoch": 1.6,
104
+ "learning_rate": 8.892450484875447e-05,
105
+ "loss": 2.4349,
106
+ "step": 75
107
+ },
108
+ {
109
+ "epoch": 1.7,
110
+ "learning_rate": 0.00010929213048843373,
111
+ "loss": 2.6474,
112
+ "step": 80
113
+ },
114
+ {
115
+ "epoch": 1.81,
116
+ "learning_rate": 0.00012515669103944476,
117
+ "loss": 2.741,
118
+ "step": 85
119
+ },
120
+ {
121
+ "epoch": 1.91,
122
+ "learning_rate": 0.00013476258540873022,
123
+ "loss": 2.5921,
124
+ "step": 90
125
+ },
126
+ {
127
+ "epoch": 2.0,
128
+ "eval_loss": 2.3871500492095947,
129
+ "eval_runtime": 1.4491,
130
+ "eval_samples_per_second": 46.235,
131
+ "eval_steps_per_second": 6.211,
132
+ "step": 94
133
+ },
134
+ {
135
+ "epoch": 2.02,
136
+ "learning_rate": 0.00013704680787354832,
137
+ "loss": 2.4265,
138
+ "step": 95
139
+ },
140
+ {
141
+ "epoch": 2.13,
142
+ "learning_rate": 0.00013175658222600302,
143
+ "loss": 2.5165,
144
+ "step": 100
145
+ },
146
+ {
147
+ "epoch": 2.23,
148
+ "learning_rate": 0.00011947733444744994,
149
+ "loss": 2.1946,
150
+ "step": 105
151
+ },
152
+ {
153
+ "epoch": 2.34,
154
+ "learning_rate": 0.0001015679084058065,
155
+ "loss": 2.3182,
156
+ "step": 110
157
+ },
158
+ {
159
+ "epoch": 2.45,
160
+ "learning_rate": 8.001019372440279e-05,
161
+ "loss": 2.2781,
162
+ "step": 115
163
+ },
164
+ {
165
+ "epoch": 2.55,
166
+ "learning_rate": 5.718980627559731e-05,
167
+ "loss": 2.2824,
168
+ "step": 120
169
+ },
170
+ {
171
+ "epoch": 2.66,
172
+ "learning_rate": 3.563209159419354e-05,
173
+ "loss": 2.2139,
174
+ "step": 125
175
+ },
176
+ {
177
+ "epoch": 2.77,
178
+ "learning_rate": 1.772266555255008e-05,
179
+ "loss": 2.3554,
180
+ "step": 130
181
+ },
182
+ {
183
+ "epoch": 2.87,
184
+ "learning_rate": 5.443417773996978e-06,
185
+ "loss": 2.1634,
186
+ "step": 135
187
+ },
188
+ {
189
+ "epoch": 2.98,
190
+ "learning_rate": 1.5319212645169297e-07,
191
+ "loss": 2.2246,
192
+ "step": 140
193
+ },
194
+ {
195
+ "epoch": 3.0,
196
+ "eval_loss": 2.2159550189971924,
197
+ "eval_runtime": 1.505,
198
+ "eval_samples_per_second": 44.519,
199
+ "eval_steps_per_second": 5.98,
200
+ "step": 141
201
+ },
202
+ {
203
+ "epoch": 3.09,
204
+ "learning_rate": 2.4374145912697595e-06,
205
+ "loss": 2.0033,
206
+ "step": 145
207
+ },
208
+ {
209
+ "epoch": 3.19,
210
+ "learning_rate": 1.204330896055522e-05,
211
+ "loss": 2.1305,
212
+ "step": 150
213
+ },
214
+ {
215
+ "epoch": 3.3,
216
+ "learning_rate": 2.790786951156628e-05,
217
+ "loss": 2.0744,
218
+ "step": 155
219
+ },
220
+ {
221
+ "epoch": 3.4,
222
+ "learning_rate": 4.8275495151245426e-05,
223
+ "loss": 2.1473,
224
+ "step": 160
225
+ },
226
+ {
227
+ "epoch": 3.51,
228
+ "learning_rate": 7.089226742272638e-05,
229
+ "loss": 2.2506,
230
+ "step": 165
231
+ },
232
+ {
233
+ "epoch": 3.62,
234
+ "learning_rate": 9.325537321665337e-05,
235
+ "loss": 2.157,
236
+ "step": 170
237
+ },
238
+ {
239
+ "epoch": 3.72,
240
+ "learning_rate": 0.00011289007061693382,
241
+ "loss": 2.1313,
242
+ "step": 175
243
+ },
244
+ {
245
+ "epoch": 3.83,
246
+ "learning_rate": 0.00012762354833724553,
247
+ "loss": 2.0593,
248
+ "step": 180
249
+ },
250
+ {
251
+ "epoch": 3.94,
252
+ "learning_rate": 0.00013582537296550986,
253
+ "loss": 2.0425,
254
+ "step": 185
255
+ },
256
+ {
257
+ "epoch": 4.0,
258
+ "eval_loss": 2.1005759239196777,
259
+ "eval_runtime": 1.5665,
260
+ "eval_samples_per_second": 42.771,
261
+ "eval_steps_per_second": 5.745,
262
+ "step": 188
263
+ },
264
+ {
265
+ "epoch": 4.04,
266
+ "learning_rate": 0.0001365879156874179,
267
+ "loss": 1.9915,
268
+ "step": 190
269
+ },
270
+ {
271
+ "epoch": 4.15,
272
+ "learning_rate": 0.00012982679213998792,
273
+ "loss": 1.8713,
274
+ "step": 195
275
+ },
276
+ {
277
+ "epoch": 4.26,
278
+ "learning_rate": 0.00011629020053848047,
279
+ "loss": 1.8176,
280
+ "step": 200
281
+ },
282
+ {
283
+ "epoch": 4.36,
284
+ "learning_rate": 9.747612470258382e-05,
285
+ "loss": 1.8704,
286
+ "step": 205
287
+ },
288
+ {
289
+ "epoch": 4.47,
290
+ "learning_rate": 7.546656444541333e-05,
291
+ "loss": 1.9435,
292
+ "step": 210
293
+ },
294
+ {
295
+ "epoch": 4.57,
296
+ "learning_rate": 5.2697137691647635e-05,
297
+ "loss": 2.0704,
298
+ "step": 215
299
+ },
300
+ {
301
+ "epoch": 4.68,
302
+ "learning_rate": 3.1687550572992616e-05,
303
+ "loss": 2.0372,
304
+ "step": 220
305
+ },
306
+ {
307
+ "epoch": 4.79,
308
+ "learning_rate": 1.4762762169883855e-05,
309
+ "loss": 1.9286,
310
+ "step": 225
311
+ },
312
+ {
313
+ "epoch": 4.89,
314
+ "learning_rate": 3.795700315696817e-06,
315
+ "loss": 1.7845,
316
+ "step": 230
317
+ },
318
+ {
319
+ "epoch": 5.0,
320
+ "learning_rate": 0.0,
321
+ "loss": 1.7819,
322
+ "step": 235
323
+ },
324
+ {
325
+ "epoch": 5.0,
326
+ "eval_loss": 1.9693368673324585,
327
+ "eval_runtime": 1.5591,
328
+ "eval_samples_per_second": 42.973,
329
+ "eval_steps_per_second": 5.772,
330
+ "step": 235
331
+ },
332
+ {
333
+ "epoch": 5.11,
334
+ "learning_rate": 3.7957003156967485e-06,
335
+ "loss": 1.6773,
336
+ "step": 240
337
+ },
338
+ {
339
+ "epoch": 5.21,
340
+ "learning_rate": 1.4762762169883802e-05,
341
+ "loss": 1.9066,
342
+ "step": 245
343
+ },
344
+ {
345
+ "epoch": 5.32,
346
+ "learning_rate": 3.168755057299255e-05,
347
+ "loss": 1.7702,
348
+ "step": 250
349
+ },
350
+ {
351
+ "epoch": 5.43,
352
+ "learning_rate": 5.269713769164743e-05,
353
+ "loss": 1.7718,
354
+ "step": 255
355
+ },
356
+ {
357
+ "epoch": 5.53,
358
+ "learning_rate": 7.546656444541325e-05,
359
+ "loss": 1.6923,
360
+ "step": 260
361
+ },
362
+ {
363
+ "epoch": 5.64,
364
+ "learning_rate": 9.747612470258363e-05,
365
+ "loss": 1.8134,
366
+ "step": 265
367
+ },
368
+ {
369
+ "epoch": 5.74,
370
+ "learning_rate": 0.0001162902005384805,
371
+ "loss": 1.6943,
372
+ "step": 270
373
+ },
374
+ {
375
+ "epoch": 5.85,
376
+ "learning_rate": 0.00012982679213998787,
377
+ "loss": 1.7474,
378
+ "step": 275
379
+ },
380
+ {
381
+ "epoch": 5.96,
382
+ "learning_rate": 0.00013658791568741792,
383
+ "loss": 1.664,
384
+ "step": 280
385
+ },
386
+ {
387
+ "epoch": 6.0,
388
+ "eval_loss": 1.8830074071884155,
389
+ "eval_runtime": 1.6028,
390
+ "eval_samples_per_second": 41.801,
391
+ "eval_steps_per_second": 5.615,
392
+ "step": 282
393
+ },
394
+ {
395
+ "epoch": 6.06,
396
+ "learning_rate": 0.00013582537296550986,
397
+ "loss": 1.7593,
398
+ "step": 285
399
+ },
400
+ {
401
+ "epoch": 6.17,
402
+ "learning_rate": 0.00012762354833724559,
403
+ "loss": 1.68,
404
+ "step": 290
405
+ },
406
+ {
407
+ "epoch": 6.28,
408
+ "learning_rate": 0.0001128900706169339,
409
+ "loss": 1.5629,
410
+ "step": 295
411
+ },
412
+ {
413
+ "epoch": 6.38,
414
+ "learning_rate": 9.325537321665346e-05,
415
+ "loss": 1.5448,
416
+ "step": 300
417
+ },
418
+ {
419
+ "epoch": 6.49,
420
+ "learning_rate": 7.089226742272658e-05,
421
+ "loss": 1.5643,
422
+ "step": 305
423
+ },
424
+ {
425
+ "epoch": 6.6,
426
+ "learning_rate": 4.827549515124539e-05,
427
+ "loss": 1.5585,
428
+ "step": 310
429
+ },
430
+ {
431
+ "epoch": 6.7,
432
+ "learning_rate": 2.7907869511566348e-05,
433
+ "loss": 1.724,
434
+ "step": 315
435
+ },
436
+ {
437
+ "epoch": 6.81,
438
+ "learning_rate": 1.2043308960555334e-05,
439
+ "loss": 1.3896,
440
+ "step": 320
441
+ },
442
+ {
443
+ "epoch": 6.91,
444
+ "learning_rate": 2.437414591269752e-06,
445
+ "loss": 1.4656,
446
+ "step": 325
447
+ },
448
+ {
449
+ "epoch": 7.0,
450
+ "eval_loss": 1.7848814725875854,
451
+ "eval_runtime": 1.6359,
452
+ "eval_samples_per_second": 40.956,
453
+ "eval_steps_per_second": 5.502,
454
+ "step": 329
455
+ },
456
+ {
457
+ "epoch": 7.02,
458
+ "learning_rate": 1.5319212645167772e-07,
459
+ "loss": 1.4519,
460
+ "step": 330
461
+ },
462
+ {
463
+ "epoch": 7.13,
464
+ "learning_rate": 5.443417773996994e-06,
465
+ "loss": 1.5894,
466
+ "step": 335
467
+ },
468
+ {
469
+ "epoch": 7.23,
470
+ "learning_rate": 1.772266555255011e-05,
471
+ "loss": 1.377,
472
+ "step": 340
473
+ },
474
+ {
475
+ "epoch": 7.34,
476
+ "learning_rate": 3.563209159419346e-05,
477
+ "loss": 1.4357,
478
+ "step": 345
479
+ },
480
+ {
481
+ "epoch": 7.45,
482
+ "learning_rate": 5.718980627559723e-05,
483
+ "loss": 1.5269,
484
+ "step": 350
485
+ },
486
+ {
487
+ "epoch": 7.55,
488
+ "learning_rate": 8.001019372440265e-05,
489
+ "loss": 1.4501,
490
+ "step": 355
491
+ },
492
+ {
493
+ "epoch": 7.66,
494
+ "learning_rate": 0.00010156790840580641,
495
+ "loss": 1.2612,
496
+ "step": 360
497
+ },
498
+ {
499
+ "epoch": 7.77,
500
+ "learning_rate": 0.0001194773344474498,
501
+ "loss": 1.3453,
502
+ "step": 365
503
+ },
504
+ {
505
+ "epoch": 7.87,
506
+ "learning_rate": 0.00013175658222600294,
507
+ "loss": 1.4728,
508
+ "step": 370
509
+ },
510
+ {
511
+ "epoch": 7.98,
512
+ "learning_rate": 0.00013704680787354832,
513
+ "loss": 1.4687,
514
+ "step": 375
515
+ },
516
+ {
517
+ "epoch": 8.0,
518
+ "eval_loss": 1.76621675491333,
519
+ "eval_runtime": 1.6517,
520
+ "eval_samples_per_second": 40.565,
521
+ "eval_steps_per_second": 5.449,
522
+ "step": 376
523
+ },
524
+ {
525
+ "epoch": 8.09,
526
+ "learning_rate": 0.00013476258540873022,
527
+ "loss": 1.4856,
528
+ "step": 380
529
+ },
530
+ {
531
+ "epoch": 8.19,
532
+ "learning_rate": 0.00012515669103944473,
533
+ "loss": 1.2361,
534
+ "step": 385
535
+ },
536
+ {
537
+ "epoch": 8.3,
538
+ "learning_rate": 0.00010929213048843395,
539
+ "loss": 1.1886,
540
+ "step": 390
541
+ },
542
+ {
543
+ "epoch": 8.4,
544
+ "learning_rate": 8.892450484875472e-05,
545
+ "loss": 1.3658,
546
+ "step": 395
547
+ },
548
+ {
549
+ "epoch": 8.51,
550
+ "learning_rate": 6.630773257727356e-05,
551
+ "loss": 1.3489,
552
+ "step": 400
553
+ },
554
+ {
555
+ "epoch": 8.62,
556
+ "learning_rate": 4.394462678334666e-05,
557
+ "loss": 1.2336,
558
+ "step": 405
559
+ },
560
+ {
561
+ "epoch": 8.72,
562
+ "learning_rate": 2.4309929383066207e-05,
563
+ "loss": 1.2826,
564
+ "step": 410
565
+ },
566
+ {
567
+ "epoch": 8.83,
568
+ "learning_rate": 9.576451662754362e-06,
569
+ "loss": 1.381,
570
+ "step": 415
571
+ },
572
+ {
573
+ "epoch": 8.94,
574
+ "learning_rate": 1.3746270344902175e-06,
575
+ "loss": 1.2151,
576
+ "step": 420
577
+ },
578
+ {
579
+ "epoch": 9.0,
580
+ "eval_loss": 1.6784825325012207,
581
+ "eval_runtime": 1.678,
582
+ "eval_samples_per_second": 39.927,
583
+ "eval_steps_per_second": 5.363,
584
+ "step": 423
585
+ }
586
+ ],
587
+ "max_steps": 470,
588
+ "num_train_epochs": 10,
589
+ "total_flos": 439754489856000.0,
590
+ "trial_name": null,
591
+ "trial_params": null
592
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aaa944c20cbf502e00ccd36c3c1dbba26621b29241ccaca9e30360a750f15bf5
3
+ size 3311
vocab.json ADDED
The diff for this file is too large to render. See raw diff