File size: 1,090 Bytes
7feaf20
 
 
6a72b4d
5701230
7feaf20
 
 
58ff319
e6b2e2d
5701230
 
 
 
e6b2e2d
5701230
9599168
5701230
 
 
 
415782a
e6b2e2d
 
415782a
e6b2e2d
5701230
 
9599168
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from typing import Dict, List, Any
from PIL import Image    
import requests
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration

class EndpointHandler():
    def __init__(self, path=""):
        model_id = path
        self.model = LlavaForConditionalGeneration.from_pretrained(
        model_id, 
        torch_dtype=torch.float16, 
        low_cpu_mem_usage=True, 
        ).to(0)
        self.processor = AutoProcessor.from_pretrained(model_id)

    def __call__(self, data: Dict[str, Any]):
        parameters = data.pop("inputs",data)
        inputs = data.pop("inputs", data)
        if parameters is not None:
            url = "http://images.cocodataset.org/val2017/000000039769.jpg"
            prompt = "USER: <image>\nWhat are these?\nASSISTANT:"
            raw_image = Image.open(requests.get(url, stream=True).raw)
            inputs = self.processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
           
            output = self.model.generate(**inputs, max_new_tokens=200, do_sample=False)
        return output