File size: 1,828 Bytes
1e05993
7feaf20
 
6a72b4d
1e05993
6a67ddb
 
7feaf20
 
 
58ff319
e6b2e2d
1e05993
23be6ed
1a792e3
6a67ddb
185c874
e6b2e2d
5701230
9599168
1e05993
23be6ed
 
1ac6526
 
23be6ed
 
 
 
 
6a67ddb
1ac6526
928a2e1
 
1ac6526
928a2e1
 
b9c7f3e
 
928a2e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from typing import Dict, Any
from PIL import Image    
import requests
import torch
import numpy as np
from transformers import AutoProcessor, LlavaForConditionalGeneration, BitsAndBytesConfig


class EndpointHandler():
    def __init__(self, path=""):
        model_id = path
        self.model = LlavaForConditionalGeneration.from_pretrained(
            model_id, 
            torch_dtype=torch.float32   , 
            low_cpu_mem_usage=True,
            load_in_4bit=True
        )
        self.processor = AutoProcessor.from_pretrained(model_id)

    def __call__(self, data: Dict[str, Any]):
        parameters = data.pop("inputs", data)
        url = ["http://images.cocodataset.org/val2017/000000039769.jpg", 
               "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg"]
        prompt = "USER: <image>\nWhat are these?\nASSISTANT:"
    
        outputs = []
        for link in url:
            raw_image = Image.open(requests.get(link, stream=True).raw)
            inputs = self.processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
            output = self.model.generate(**inputs, max_new_tokens=200, do_sample=False)
            readable = (self.processor.decode(output[0][2:], skip_special_tokens=True))
            outputs.append(readable)
        return outputs