from typing import Dict, Any from PIL import Image import requests import torch import numpy as np from transformers import AutoProcessor, LlavaForConditionalGeneration class EndpointHandler(): def __init__(self, path=""): model_id = path self.model = LlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(0) self.processor = AutoProcessor.from_pretrained(model_id) def __call__(self, data: Dict[str, Any]): parameters = data.pop("inputs", data) if parameters is not None: url = "http://images.cocodataset.org/val2017/000000039769.jpg" prompt = "USER: \nWhat are these?\nASSISTANT:" raw_image = Image.open(requests.get(url, stream=True).raw) inputs = self.processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16) output = self.model.generate(**inputs, max_new_tokens=200, do_sample=False) # Convert Tensor to NumPy array or list before returning output = output.cpu().numpy().tolist() return output