File size: 1,124 Bytes
00a235d 5db952d 00a235d 5db952d 00a235d 5db952d 00a235d 5db952d 00a235d 5db952d 00a235d 5db952d 00a235d 5db952d 00a235d 5db952d 00a235d 5db952d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
---
license: bsd-3-clause
---
Mirror of the base ProGen2-medium model (with slightly modified configuration and forward pass) introduced by [Nijkamp, et al.](https://arxiv.org/abs/2206.13517).
See also my github [repo](https://github.com/hugohrban/ProGen2-finetuning/tree/main) for an example of finetuning this model.
Example usage:
```python
from transformers import AutoModelForCausalLM
from tokenizers import Tokenizer
import torch
import torch.nn.functional as F
# load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("hugohrban/progen2-medium", trust_remote_code=True)
tokenizer = Tokenizer.from_pretrained("hugohrban/progen2-medium")
tokenizer.no_padding()
# prepare input
prompt = "1MEVVIVTGMSGAGK"
input_ids = torch.tensor(tokenizer.encode(prompt).ids).to(model.device)
# forward pass
logits = model(input_ids).logits
# print output probabilities
next_token_logits = logits[-1, :]
next_token_probs = F.softmax(next_token_logits, dim=-1)
for i in range(tokenizer.get_vocab_size(with_added_tokens=False)):
print(f"{tokenizer.id_to_token(i)}: {100 * next_token_probs[i].item():.2f} %")
```
|