Update README.md
Browse files
README.md
CHANGED
@@ -9,4 +9,33 @@ ProGen2-small finetuned on 7 protein families.
|
|
9 |
|
10 |
Bidirectional model trained on both N -> C and C -> N directions of protein sequences, specified by tokens "1" and "2" respectively.
|
11 |
|
12 |
-
See [github repo](https://github.com/hugohrban/ProGen2-finetuning/tree/main) for more
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
Bidirectional model trained on both N -> C and C -> N directions of protein sequences, specified by tokens "1" and "2" respectively.
|
11 |
|
12 |
+
See my [github repo](https://github.com/hugohrban/ProGen2-finetuning/tree/main) for more information.
|
13 |
+
|
14 |
+
Example usage:
|
15 |
+
|
16 |
+
```python
|
17 |
+
from transformers import AutoModelForCausalLM
|
18 |
+
from transformers import AutoTokenizer
|
19 |
+
# optionally use local imports
|
20 |
+
# from models.progen.modeling_progen import ProGenForCausalLM
|
21 |
+
# from models.progen.configuration_progen import ProGenConfig
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
|
25 |
+
# load model and tokenizer
|
26 |
+
model = AutoModelForCausalLM.from_pretrained("hugohrban/progen2-small-mix7-bidi", trust_remote_code=True)
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained("hugohrban/progen2-small-mix7-bidi", trust_remote_code=True)
|
28 |
+
|
29 |
+
# prepare input
|
30 |
+
prompt = "<|pf00125|>2FDDDVSAVKSTGV"
|
31 |
+
input_ids = torch.tensor(tokenizer.encode(prompt)).to(model.device)
|
32 |
+
|
33 |
+
# forward pass
|
34 |
+
logits = model(input_ids).logits
|
35 |
+
|
36 |
+
# print output probabilities
|
37 |
+
next_token_logits = logits[-1, :]
|
38 |
+
next_token_probs = F.softmax(next_token_logits, dim=-1)
|
39 |
+
for i, prob in enumerate(next_token_probs):
|
40 |
+
print(f"{tokenizer.decode(i)}: {100 * prob:.2f}%")
|
41 |
+
```
|