Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,34 @@
|
|
1 |
---
|
2 |
license: bsd-3-clause
|
3 |
---
|
4 |
-
|
5 |
|
6 |
-
[Original repo](https://github.com/salesforce/progen/tree/main/progen2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: bsd-3-clause
|
3 |
---
|
4 |
+
Mirror of the base ProGen2-small model.
|
5 |
|
6 |
+
[Original repo](https://github.com/salesforce/progen/tree/main/progen2)
|
7 |
+
|
8 |
+
See also my github [repo](https://github.com/hugohrban/ProGen2-finetuning/tree/main) for an example of finetuning this model.
|
9 |
+
|
10 |
+
Example usage:
|
11 |
+
|
12 |
+
```python
|
13 |
+
from transformers import AutoModelForCausalLM
|
14 |
+
from transformers import AutoTokenizer
|
15 |
+
import torch
|
16 |
+
import torch.nn.functional as F
|
17 |
+
|
18 |
+
# load model and tokenizer
|
19 |
+
model = AutoModelForCausalLM.from_pretrained("hugohrban/progen2-small", trust_remote_code=True)
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("hugohrban/progen2-small", trust_remote_code=True)
|
21 |
+
|
22 |
+
# prepare input
|
23 |
+
prompt = "1MEVVIVTGMSGAGK"
|
24 |
+
input_ids = torch.tensor(tokenizer.encode(prompt)).to(model.device)
|
25 |
+
|
26 |
+
# forward pass
|
27 |
+
logits = model(input_ids).logits
|
28 |
+
|
29 |
+
# print output probabilities
|
30 |
+
next_token_logits = logits[-1, :]
|
31 |
+
next_token_probs = F.softmax(next_token_logits, dim=-1)
|
32 |
+
for i, prob in enumerate(next_token_probs):
|
33 |
+
print(f"{tokenizer.decode(i)}: {100 * prob:.2f}%")
|
34 |
+
```
|