hugosousa commited on
Commit
b5571c0
·
verified ·
1 Parent(s): faccefc

Model save

Browse files
Files changed (2) hide show
  1. README.md +94 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: HuggingFaceTB/SmolLM2-135M
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: smol-135-tq-closure-augment-synthetic
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # smol-135-tq-closure-augment-synthetic
18
+
19
+ This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co/HuggingFaceTB/SmolLM2-135M) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2285
22
+ - < Precision: 0.9131
23
+ - < Recall: 0.9079
24
+ - < F1-score: 0.9105
25
+ - < Support: 7717.0
26
+ - > Precision: 0.9138
27
+ - > Recall: 0.9093
28
+ - > F1-score: 0.9115
29
+ - > Support: 7717.0
30
+ - = Precision: 0.7882
31
+ - = Recall: 0.7975
32
+ - = F1-score: 0.7928
33
+ - = Support: 3244.0
34
+ - - Precision: 0.7313
35
+ - - Recall: 0.7557
36
+ - - F1-score: 0.7433
37
+ - - Support: 1322.0
38
+ - Accuracy: 0.8804
39
+ - Macro Avg Precision: 0.8366
40
+ - Macro Avg Recall: 0.8426
41
+ - Macro Avg F1-score: 0.8395
42
+ - Macro Avg Support: 20000.0
43
+ - Weighted Avg Precision: 0.8811
44
+ - Weighted Avg Recall: 0.8804
45
+ - Weighted Avg F1-score: 0.8807
46
+ - Weighted Avg Support: 20000.0
47
+
48
+ ## Model description
49
+
50
+ More information needed
51
+
52
+ ## Intended uses & limitations
53
+
54
+ More information needed
55
+
56
+ ## Training and evaluation data
57
+
58
+ More information needed
59
+
60
+ ## Training procedure
61
+
62
+ ### Training hyperparameters
63
+
64
+ The following hyperparameters were used during training:
65
+ - learning_rate: 0.001
66
+ - train_batch_size: 64
67
+ - eval_batch_size: 64
68
+ - seed: 42
69
+ - distributed_type: multi-GPU
70
+ - num_devices: 4
71
+ - gradient_accumulation_steps: 2
72
+ - total_train_batch_size: 512
73
+ - total_eval_batch_size: 256
74
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
75
+ - lr_scheduler_type: reduce_lr_on_plateau
76
+ - num_epochs: 30
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | < Precision | < Recall | < F1-score | < Support | > Precision | > Recall | > F1-score | > Support | = Precision | = Recall | = F1-score | = Support | - Precision | - Recall | - F1-score | - Support | Accuracy | Macro Avg Precision | Macro Avg Recall | Macro Avg F1-score | Macro Avg Support | Weighted Avg Precision | Weighted Avg Recall | Weighted Avg F1-score | Weighted Avg Support |
81
+ |:-------------:|:-----:|:-----:|:---------------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:--------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|
82
+ | 0.2065 | 1.0 | 2708 | 0.1948 | 0.9182 | 0.8800 | 0.8987 | 7717.0 | 0.9012 | 0.8923 | 0.8967 | 7717.0 | 0.7478 | 0.8576 | 0.7990 | 3244.0 | 0.7788 | 0.7322 | 0.7548 | 1322.0 | 0.8713 | 0.8365 | 0.8405 | 0.8373 | 20000.0 | 0.8748 | 0.8713 | 0.8722 | 20000.0 |
83
+ | 0.1833 | 2.0 | 5416 | 0.1898 | 0.9121 | 0.9051 | 0.9086 | 7717.0 | 0.9113 | 0.9016 | 0.9065 | 7717.0 | 0.7992 | 0.8098 | 0.8045 | 3244.0 | 0.7401 | 0.7950 | 0.7666 | 1322.0 | 0.8810 | 0.8407 | 0.8529 | 0.8465 | 20000.0 | 0.8821 | 0.8810 | 0.8815 | 20000.0 |
84
+ | 0.1415 | 3.0 | 8124 | 0.2006 | 0.8913 | 0.9220 | 0.9064 | 7717.0 | 0.9039 | 0.9116 | 0.9077 | 7717.0 | 0.8096 | 0.7747 | 0.7917 | 3244.0 | 0.8018 | 0.6853 | 0.7390 | 1322.0 | 0.8784 | 0.8516 | 0.8234 | 0.8362 | 20000.0 | 0.8770 | 0.8784 | 0.8772 | 20000.0 |
85
+ | 0.1136 | 4.0 | 10832 | 0.2063 | 0.9045 | 0.9136 | 0.9090 | 7717.0 | 0.9038 | 0.9106 | 0.9072 | 7717.0 | 0.7968 | 0.8039 | 0.8004 | 3244.0 | 0.7876 | 0.6899 | 0.7355 | 1322.0 | 0.8799 | 0.8482 | 0.8295 | 0.8380 | 20000.0 | 0.8790 | 0.8799 | 0.8792 | 20000.0 |
86
+ | 0.1051 | 5.0 | 13540 | 0.2285 | 0.9131 | 0.9079 | 0.9105 | 7717.0 | 0.9138 | 0.9093 | 0.9115 | 7717.0 | 0.7882 | 0.7975 | 0.7928 | 3244.0 | 0.7313 | 0.7557 | 0.7433 | 1322.0 | 0.8804 | 0.8366 | 0.8426 | 0.8395 | 20000.0 | 0.8811 | 0.8804 | 0.8807 | 20000.0 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.47.1
92
+ - Pytorch 2.5.1+cu124
93
+ - Datasets 3.0.1
94
+ - Tokenizers 0.21.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5817a386c370b8c3d14c62b4ddcdedf3652e46d9b8b53dc7d59857ae4e36da73
3
  size 269074456
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bcde79c40c3c95afaddf2ad7acba7c60d7ffd017906fdc208533dfbb0dc3320
3
  size 269074456