Model save
Browse files- README.md +94 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: HuggingFaceTB/SmolLM2-135M
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: smol-135-tq-closure-augment-synthetic
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# smol-135-tq-closure-augment-synthetic
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co/HuggingFaceTB/SmolLM2-135M) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2285
|
22 |
+
- < Precision: 0.9131
|
23 |
+
- < Recall: 0.9079
|
24 |
+
- < F1-score: 0.9105
|
25 |
+
- < Support: 7717.0
|
26 |
+
- > Precision: 0.9138
|
27 |
+
- > Recall: 0.9093
|
28 |
+
- > F1-score: 0.9115
|
29 |
+
- > Support: 7717.0
|
30 |
+
- = Precision: 0.7882
|
31 |
+
- = Recall: 0.7975
|
32 |
+
- = F1-score: 0.7928
|
33 |
+
- = Support: 3244.0
|
34 |
+
- - Precision: 0.7313
|
35 |
+
- - Recall: 0.7557
|
36 |
+
- - F1-score: 0.7433
|
37 |
+
- - Support: 1322.0
|
38 |
+
- Accuracy: 0.8804
|
39 |
+
- Macro Avg Precision: 0.8366
|
40 |
+
- Macro Avg Recall: 0.8426
|
41 |
+
- Macro Avg F1-score: 0.8395
|
42 |
+
- Macro Avg Support: 20000.0
|
43 |
+
- Weighted Avg Precision: 0.8811
|
44 |
+
- Weighted Avg Recall: 0.8804
|
45 |
+
- Weighted Avg F1-score: 0.8807
|
46 |
+
- Weighted Avg Support: 20000.0
|
47 |
+
|
48 |
+
## Model description
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Intended uses & limitations
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Training and evaluation data
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training procedure
|
61 |
+
|
62 |
+
### Training hyperparameters
|
63 |
+
|
64 |
+
The following hyperparameters were used during training:
|
65 |
+
- learning_rate: 0.001
|
66 |
+
- train_batch_size: 64
|
67 |
+
- eval_batch_size: 64
|
68 |
+
- seed: 42
|
69 |
+
- distributed_type: multi-GPU
|
70 |
+
- num_devices: 4
|
71 |
+
- gradient_accumulation_steps: 2
|
72 |
+
- total_train_batch_size: 512
|
73 |
+
- total_eval_batch_size: 256
|
74 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
75 |
+
- lr_scheduler_type: reduce_lr_on_plateau
|
76 |
+
- num_epochs: 30
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | < Precision | < Recall | < F1-score | < Support | > Precision | > Recall | > F1-score | > Support | = Precision | = Recall | = F1-score | = Support | - Precision | - Recall | - F1-score | - Support | Accuracy | Macro Avg Precision | Macro Avg Recall | Macro Avg F1-score | Macro Avg Support | Weighted Avg Precision | Weighted Avg Recall | Weighted Avg F1-score | Weighted Avg Support |
|
81 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:--------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|
|
82 |
+
| 0.2065 | 1.0 | 2708 | 0.1948 | 0.9182 | 0.8800 | 0.8987 | 7717.0 | 0.9012 | 0.8923 | 0.8967 | 7717.0 | 0.7478 | 0.8576 | 0.7990 | 3244.0 | 0.7788 | 0.7322 | 0.7548 | 1322.0 | 0.8713 | 0.8365 | 0.8405 | 0.8373 | 20000.0 | 0.8748 | 0.8713 | 0.8722 | 20000.0 |
|
83 |
+
| 0.1833 | 2.0 | 5416 | 0.1898 | 0.9121 | 0.9051 | 0.9086 | 7717.0 | 0.9113 | 0.9016 | 0.9065 | 7717.0 | 0.7992 | 0.8098 | 0.8045 | 3244.0 | 0.7401 | 0.7950 | 0.7666 | 1322.0 | 0.8810 | 0.8407 | 0.8529 | 0.8465 | 20000.0 | 0.8821 | 0.8810 | 0.8815 | 20000.0 |
|
84 |
+
| 0.1415 | 3.0 | 8124 | 0.2006 | 0.8913 | 0.9220 | 0.9064 | 7717.0 | 0.9039 | 0.9116 | 0.9077 | 7717.0 | 0.8096 | 0.7747 | 0.7917 | 3244.0 | 0.8018 | 0.6853 | 0.7390 | 1322.0 | 0.8784 | 0.8516 | 0.8234 | 0.8362 | 20000.0 | 0.8770 | 0.8784 | 0.8772 | 20000.0 |
|
85 |
+
| 0.1136 | 4.0 | 10832 | 0.2063 | 0.9045 | 0.9136 | 0.9090 | 7717.0 | 0.9038 | 0.9106 | 0.9072 | 7717.0 | 0.7968 | 0.8039 | 0.8004 | 3244.0 | 0.7876 | 0.6899 | 0.7355 | 1322.0 | 0.8799 | 0.8482 | 0.8295 | 0.8380 | 20000.0 | 0.8790 | 0.8799 | 0.8792 | 20000.0 |
|
86 |
+
| 0.1051 | 5.0 | 13540 | 0.2285 | 0.9131 | 0.9079 | 0.9105 | 7717.0 | 0.9138 | 0.9093 | 0.9115 | 7717.0 | 0.7882 | 0.7975 | 0.7928 | 3244.0 | 0.7313 | 0.7557 | 0.7433 | 1322.0 | 0.8804 | 0.8366 | 0.8426 | 0.8395 | 20000.0 | 0.8811 | 0.8804 | 0.8807 | 20000.0 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.47.1
|
92 |
+
- Pytorch 2.5.1+cu124
|
93 |
+
- Datasets 3.0.1
|
94 |
+
- Tokenizers 0.21.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 269074456
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bcde79c40c3c95afaddf2ad7acba7c60d7ffd017906fdc208533dfbb0dc3320
|
3 |
size 269074456
|