--- library_name: transformers license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-135M tags: - generated_from_trainer metrics: - accuracy model-index: - name: smol-135-tq-closure-augment-synthetic results: [] --- # smol-135-tq-closure-augment-synthetic This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co/HuggingFaceTB/SmolLM2-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1898 - < Precision: 0.9121 - < Recall: 0.9051 - < F1-score: 0.9086 - < Support: 7717.0 - > Precision: 0.9113 - > Recall: 0.9016 - > F1-score: 0.9065 - > Support: 7717.0 - = Precision: 0.7992 - = Recall: 0.8098 - = F1-score: 0.8045 - = Support: 3244.0 - - Precision: 0.7401 - - Recall: 0.7950 - - F1-score: 0.7666 - - Support: 1322.0 - Accuracy: 0.8810 - Macro Avg Precision: 0.8407 - Macro Avg Recall: 0.8529 - Macro Avg F1-score: 0.8465 - Macro Avg Support: 20000.0 - Weighted Avg Precision: 0.8821 - Weighted Avg Recall: 0.8810 - Weighted Avg F1-score: 0.8815 - Weighted Avg Support: 20000.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 512 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: reduce_lr_on_plateau - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | < Precision | < Recall | < F1-score | < Support | > Precision | > Recall | > F1-score | > Support | = Precision | = Recall | = F1-score | = Support | - Precision | - Recall | - F1-score | - Support | Accuracy | Macro Avg Precision | Macro Avg Recall | Macro Avg F1-score | Macro Avg Support | Weighted Avg Precision | Weighted Avg Recall | Weighted Avg F1-score | Weighted Avg Support | |:-------------:|:-----:|:-----:|:---------------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:--------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:| | 0.2065 | 1.0 | 2708 | 0.1948 | 0.9182 | 0.8800 | 0.8987 | 7717.0 | 0.9012 | 0.8923 | 0.8967 | 7717.0 | 0.7478 | 0.8576 | 0.7990 | 3244.0 | 0.7788 | 0.7322 | 0.7548 | 1322.0 | 0.8713 | 0.8365 | 0.8405 | 0.8373 | 20000.0 | 0.8748 | 0.8713 | 0.8722 | 20000.0 | | 0.1833 | 2.0 | 5416 | 0.1898 | 0.9121 | 0.9051 | 0.9086 | 7717.0 | 0.9113 | 0.9016 | 0.9065 | 7717.0 | 0.7992 | 0.8098 | 0.8045 | 3244.0 | 0.7401 | 0.7950 | 0.7666 | 1322.0 | 0.8810 | 0.8407 | 0.8529 | 0.8465 | 20000.0 | 0.8821 | 0.8810 | 0.8815 | 20000.0 | | 0.1415 | 3.0 | 8124 | 0.2006 | 0.8913 | 0.9220 | 0.9064 | 7717.0 | 0.9039 | 0.9116 | 0.9077 | 7717.0 | 0.8096 | 0.7747 | 0.7917 | 3244.0 | 0.8018 | 0.6853 | 0.7390 | 1322.0 | 0.8784 | 0.8516 | 0.8234 | 0.8362 | 20000.0 | 0.8770 | 0.8784 | 0.8772 | 20000.0 | | 0.1136 | 4.0 | 10832 | 0.2063 | 0.9045 | 0.9136 | 0.9090 | 7717.0 | 0.9038 | 0.9106 | 0.9072 | 7717.0 | 0.7968 | 0.8039 | 0.8004 | 3244.0 | 0.7876 | 0.6899 | 0.7355 | 1322.0 | 0.8799 | 0.8482 | 0.8295 | 0.8380 | 20000.0 | 0.8790 | 0.8799 | 0.8792 | 20000.0 | | 0.1051 | 5.0 | 13540 | 0.2285 | 0.9131 | 0.9079 | 0.9105 | 7717.0 | 0.9138 | 0.9093 | 0.9115 | 7717.0 | 0.7882 | 0.7975 | 0.7928 | 3244.0 | 0.7313 | 0.7557 | 0.7433 | 1322.0 | 0.8804 | 0.8366 | 0.8426 | 0.8395 | 20000.0 | 0.8811 | 0.8804 | 0.8807 | 20000.0 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.1 - Tokenizers 0.21.0