File size: 4,695 Bytes
8f44bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c6652c
 
 
8f44bf1
4c6652c
4f026c4
4c6652c
8f44bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2570c61
 
 
 
 
 
 
 
 
8f44bf1
2570c61
8f44bf1
 
 
 
 
07cc489
2570c61
07cc489
8f44bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc17449
35731d6
 
 
 
25d64be
35731d6
 
cc17449
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
base_model:
- huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated
library_name: transformers
tags:
- Text Generation
- text-generation-inference
- Inference Endpoints
- Transformers
- Fusion
language:
- en
---
# DeepSeek-R1-Distill-Qwen-Coder-32B-Fusion-9010

## Overview
`DeepSeek-R1-Distill-Qwen-Coder-32B-Fusion-9010` is a mixed model that combines the strengths of two powerful DeepSeek-R1-Distill-Qwen-based models: 
[huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated](https://huggingface.co/huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated) and 
[huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated). 

**Although it's a simple mix, the model is usable, and no gibberish has appeared**.

This is an experiment. 
Improve thinking abilities in programming and code. If any of the models meet your expectations, please give a thumbs up. This will help us finalize which model best meets
everyone's expectations.

## Model Details
- **Base Models:**
  - [huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated](https://huggingface.co/huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated) (90%)
  - [huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated) (10%)
- **Model Size:** 32B parameters
- **Architecture:** Qwen2.5
- **Mixing Ratio:** 9:1 (DeepSeek-R1-Distill-Qwen-32B-abliterated:Qwen2.5-Coder-32B-Instruct-abliterated)

## Usage
You can use this mixed model in your applications by loading it with Hugging Face's `transformers` library:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch

# Load the model and tokenizer
model_name = "huihui-ai/DeepSeek-R1-Distill-Qwen-Coder-32B-Fusion-9010"
#quant_config_4 = BitsAndBytesConfig(
#    load_in_4bit=True,
#    bnb_4bit_compute_dtype=torch.bfloat16,
#    bnb_4bit_use_double_quant=True,
#    llm_int8_enable_fp32_cpu_offload=True,
#)

quant_config_8 = BitsAndBytesConfig(
    load_in_8bit=True,
    llm_int8_enable_fp32_cpu_offload=True,
    llm_int8_has_fp16_weight=True,
)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,
    quantization_config=quant_config_8,
    device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

# Initialize conversation context
initial_messages = [
    {"role": "system", "content": "You are a helpful assistant."}
]
messages = initial_messages.copy()  # Copy the initial conversation context

# Enter conversation loop
while True:
    # Get user input
    user_input = input("User: ").strip()  # Strip leading and trailing spaces

    # If the user types '/exit', end the conversation
    if user_input.lower() == "/exit":
        print("Exiting chat.")
        break

    # If the user types '/clean', reset the conversation context
    if user_input.lower() == "/clean":
        messages = initial_messages.copy()  # Reset conversation context
        print("Chat history cleared. Starting a new conversation.")
        continue

    # If input is empty, prompt the user and continue
    if not user_input:
        print("Input cannot be empty. Please enter something.")
        continue

    # Add user input to the conversation
    messages.append({"role": "user", "content": user_input})

    # Build the chat template
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )

    # Tokenize input and prepare it for the model
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    # Generate a response from the model
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=8192
    )

    # Extract model output, removing special tokens
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

    # Add the model's response to the conversation
    messages.append({"role": "assistant", "content": response})

    # Print the model's response
    print(f"Response: {response}")

```

## Use with ollama

You can use [huihui_ai/deepseek-r1-Fusion](https://ollama.com/huihui_ai/deepseek-r1-Fusion) directly
```
ollama run huihui_ai/deepseek-r1-Fusion
```

### Donation

If you like it, please click 'like' and follow us for more updates.

##### Your donation helps us continue our further development and improvement, a cup of coffee can do it.
- bitcoin:
```
  bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge
```