File size: 4,695 Bytes
8f44bf1 4c6652c 8f44bf1 4c6652c 4f026c4 4c6652c 8f44bf1 2570c61 8f44bf1 2570c61 8f44bf1 07cc489 2570c61 07cc489 8f44bf1 cc17449 35731d6 25d64be 35731d6 cc17449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
base_model:
- huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated
library_name: transformers
tags:
- Text Generation
- text-generation-inference
- Inference Endpoints
- Transformers
- Fusion
language:
- en
---
# DeepSeek-R1-Distill-Qwen-Coder-32B-Fusion-9010
## Overview
`DeepSeek-R1-Distill-Qwen-Coder-32B-Fusion-9010` is a mixed model that combines the strengths of two powerful DeepSeek-R1-Distill-Qwen-based models:
[huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated](https://huggingface.co/huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated) and
[huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated).
**Although it's a simple mix, the model is usable, and no gibberish has appeared**.
This is an experiment.
Improve thinking abilities in programming and code. If any of the models meet your expectations, please give a thumbs up. This will help us finalize which model best meets
everyone's expectations.
## Model Details
- **Base Models:**
- [huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated](https://huggingface.co/huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated) (90%)
- [huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated) (10%)
- **Model Size:** 32B parameters
- **Architecture:** Qwen2.5
- **Mixing Ratio:** 9:1 (DeepSeek-R1-Distill-Qwen-32B-abliterated:Qwen2.5-Coder-32B-Instruct-abliterated)
## Usage
You can use this mixed model in your applications by loading it with Hugging Face's `transformers` library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
# Load the model and tokenizer
model_name = "huihui-ai/DeepSeek-R1-Distill-Qwen-Coder-32B-Fusion-9010"
#quant_config_4 = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_compute_dtype=torch.bfloat16,
# bnb_4bit_use_double_quant=True,
# llm_int8_enable_fp32_cpu_offload=True,
#)
quant_config_8 = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True,
llm_int8_has_fp16_weight=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
quantization_config=quant_config_8,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Initialize conversation context
initial_messages = [
{"role": "system", "content": "You are a helpful assistant."}
]
messages = initial_messages.copy() # Copy the initial conversation context
# Enter conversation loop
while True:
# Get user input
user_input = input("User: ").strip() # Strip leading and trailing spaces
# If the user types '/exit', end the conversation
if user_input.lower() == "/exit":
print("Exiting chat.")
break
# If the user types '/clean', reset the conversation context
if user_input.lower() == "/clean":
messages = initial_messages.copy() # Reset conversation context
print("Chat history cleared. Starting a new conversation.")
continue
# If input is empty, prompt the user and continue
if not user_input:
print("Input cannot be empty. Please enter something.")
continue
# Add user input to the conversation
messages.append({"role": "user", "content": user_input})
# Build the chat template
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize input and prepare it for the model
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate a response from the model
generated_ids = model.generate(
**model_inputs,
max_new_tokens=8192
)
# Extract model output, removing special tokens
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Add the model's response to the conversation
messages.append({"role": "assistant", "content": response})
# Print the model's response
print(f"Response: {response}")
```
## Use with ollama
You can use [huihui_ai/deepseek-r1-Fusion](https://ollama.com/huihui_ai/deepseek-r1-Fusion) directly
```
ollama run huihui_ai/deepseek-r1-Fusion
```
### Donation
If you like it, please click 'like' and follow us for more updates.
##### Your donation helps us continue our further development and improvement, a cup of coffee can do it.
- bitcoin:
```
bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge
```
|